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A B S T R A C T   

The demand for high-quality customized products compels manufacturers to adopt batch production. With the 
ability to accurately estimate batch production yield rates in advance, manufacturers can effectively plan the 
batch production process and control the production risk based on the estimated values. The per-batch pro
duction yield rates can be directly predicted by multiplying the accurately estimated per-machine yield rates 
corresponding to a batch. Unfortunately, for most manufacturers, the actual per-machine yield rates are difficult 
to estimate owing to a variety factors. Moreover, per-batch yield-rate prediction has received little attention 
because recent studies only focused on yield-rate prediction methods for single/continuous production systems. 
To address this, we propose an expectation-maximization-based approach to predict per-batch yield rates by 
estimating the per-machine yield rates. Based on the data from T-company, the proposed method could predict 
the per-batch yield rates for the subsequent week with an average accuracy of 91.86 %, and for five consecutive 
weeks with an average accuracy of more than 90 %. To further evaluate the performance of the proposed method 
with different batch production patterns, we conducted simulations to obtain the average accuracy of the esti
mated per-machine yield rates. In the simulations, the average prediction accuracy of the per-batch yield rates 
was 91.29 % in the batch production pattern, as in the case of T-company (~250 machines and ~1000 batches 
per week), and it increased as the number of batches increased.   

1. Introduction 

The dynamic nature of market demand compels most manufacturers 
to offer high-quality customized products [1,2]. To address this chal
lenge, manufacturers should respond swiftly to changes in customer’s 
demands [3]. Since batch production enables mass production of 
high-variety customized products [4], it has been widely used by many 
manufacturers all over the world [5]. The major challenge of batch 
production involves good production planning because of the manage
ment complexity, including the factors of numerous products, produc
tion stations, and machines. One way to better plan batch production 
and control risk is to estimate the yield rate of their products accurately. 
This also allows manufacturers to adjust their parameters and estimate 
as well as evaluate their production [6–9]. In the event that manufac
turers find it difficult to meet the demands of the customer, manufac
turers could look for another strategy [10], such as adaptive sourcing, 
which could achieve business outcomes while controlling risk. As a 
result, the ability to estimate the yield rate of a batch production system 

is important to the modern manufacturing industry. 
In batch-production manufacturing, manufacturers should plan the 

machines to be used for each batch product. They should also predict the 
yield rate of each batch that is manufactured without performing rework 
or correction, which is called first-pass yield (FPY) [11]. According to 
FPY theory, the yield rate of a production process is equal to the product 
of all the machine yield rates involved. As a result, the per-batch pro
duction yield rates can be directly predicted by accurately estimating the 
yield rate of each production machine (per-machine yield rates), and 
subsequently using the estimated per-machine yield rates to calculate 
future per-batch yield rates. However, the actual per-machine yield rates 
are generally difficult to estimate because they are affected by multiple 
factors, such as production process drift, environment, and machine 
condition, misconfiguration, and age [12–15]. Accordingly, related 
studies are scarce, and the problem remains challenging. 

Although studies on per-batch production yield-rate prediction are 
scarce, several yield-rate prediction methods for single/continuous 
production systems have recently been proposed [16–20]. These 
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methods can be classified into macro-yield-modeling or micro-
yield-modeling [21]. Table 1 provides a detailed comparison of 
macro-yield-modeling and micro-yield-modeling. In 
macro-yield-modeling, only large a priori factors are considered (e.g. 
time-series data of product yield rates). Therefore, these methods may 
ignore the factors of particular products or conditions of the 
manufacturing environment at the time. Conversely, in 
micro-yield-modeling, more detailed information is considered, such as 
different classes of defect categories, layouts, and process variations of 
circuit design. Most recent studies employ micro-yield-modeling and 
adopt deep-learning methods [16–18] to predict the yield rates since 
they have demonstrated outstanding performance in smart 
manufacturing [22] such as fault diagnosis [23] and defect detection 
[24]. Moreover, there are a few macro-yield-modeling approaches that 
only focus on time series data and utilize fuzzy forecasting methods to 
predict the yield rates [19,20]. Unfortunately, these methods cannot be 
reused directly in batch production systems, in which the number of 
produced pieces is relatively small, and the number of product types is 
large compared with the corresponding numbers in single/continuous 
production systems. Therefore, the amount of the accumulated pro
duction data for each batch product may not be sufficient to construct an 
efficient yield-rate prediction model, particularly when deep-learning 
technologies are adopted. 

To address the challenge of small-volume, large-variety production 
in a batch production system, we propose a simple macro-yield- 
modeling approach to predict the per-batch production yield rates by 
using the estimated per-machine yield rates. In this approach, the actual 
per-machine yield rates can be calculated based on the number of 
observed defective products manufactured by a particular machine. 
However, defective products can only be observed using quality in
spection devices, which are expensive to use for all production machines 
[25]. Consequently, manufacturers may reduce the number of inspec
tion devices if possible, and they should achieve a balance between the 
number of inspection devices and the ability to control production 
quality [2,15]. Therefore, in practice, it is difficult to determine the 
actual per-machine yield rates given a limited number of inspection 
devices. 

In this study, we developed a novel approach based on the 
expectation-maximization (EM) algorithm to estimate the per-machine 
yield rates in a production process. We assume that the per-machine 
yield rates do not change in the short term, and therefore the per- 

machine yield rates can be used to predict future per-batch yield rates. 
As a result, one or two weeks of production data are appropriate to 
predict the per-batch yield rate for subsequent weeks. The rationale for 
using the EM-based algorithm is that it requires relatively simple in
formation, including production paths, the number of raw products, and 
the number of defective products detected by each inspection device, to 
estimate the per-machine yield rates. As a result, the proposed method 
can be applied to a manufacturer, even though a large number of sensors 
to detect the production status or machine production conditions, such 
as temperature, humidity, and vibrations, are not available. It should be 
noted that the EM algorithm has several limitations, including slow 
convergence and convergence to local optima [26–28]. To overcome 
these limitations, we used constrained least-squares to obtain appro
priate initial values, which later improved the maximization of the 
likelihood function. Additionally, the proper parameters for the stop
ping criterion, such as the maximum number of iterations and the 
threshold value for MSE, are set based on our preliminary experiments. 
The results suggested that approximately 60–100 iterations and an MSE 
threshold of 0.001 are sufficient to stop the algorithm. 

To validate the efficiency of the proposed method, we used time- 
series data from T-company. The datasets contain up to 70 weeks of 
real-world production data that were collected through sensors and 
human operators; a week of the data contains thousands of batches of 
products and more than 200 machines. We used one-week data to build 
the prediction model and then used the model to predict the per-batch 
yield rate in the subsequent weeks. The results demonstrate that our 
approach can predict the per-batch yield rates of the subsequent week 
with an average accuracy of 91.86 %, and the production yield rates of 
the subsequent five weeks with an average accuracy of more than 90 %. 

The real data from T-company only indicate that the proposed 
method achieves good prediction accuracy with this particular batch 
production pattern. To further understand whether the proposed 
method is effective with different batch production patterns, we used 
simulations. For each simulation, we set the per-machine yield rates 
along with the batch production parameters, and then simulated the 
batch production process. Subsequently, we used the proposed EM- 
based algorithm to obtain the estimated per-machine yield rates. In 
general, if the estimated per-machine yield rates approach closer to the 
pre-set per-machine yield rates (ground truth), better prediction accu
racy is achieved. Therefore, we used the average accuracy of the esti
mated per-machine yield rates to evaluate the performance of the 
proposed method with different batch production patterns. The results 
indicated that, by using a batch production pattern similar to that of the 
actual data set for T-company (~250 machines and ~1000 batches per 
week), the average accuracy of our approach for per-machine yield-rate 
estimates is 91.84 %, with a minimum accuracy of 62.51 %, a maximum 
accuracy of 100 %, and a standard deviation of 6.12 %. Furthermore, the 
average accuracy of our approach for per-batch yield-rate estimates is 
91.29 %, with a minimum accuracy of 90.54 %, a maximum accuracy of 
92.08 %, and a standard deviation of 0.19 %. The accuracy increased as 
the number of batches increased. 

The proposed method has several managerial implications. First, 
manufacturers can plan the number of additional production pieces for 
each production batch using the proposed method. This facilitates the 
control of production cost as well as risk. Second, our approach uses only 
production data without an excessive number of parameters. Therefore, 
it has less management overhead than other recent deep-learning 
methods. It is conceivable that manufacturers with limited resources 
can easily implement this approach. The contributions of this study are 
as follows. 

• The proposed method can predict per-batch yield rates with satis
factory accuracy, as verified using real-world datasets in our 
experiments. 

Table 1 
Comparisons on the proposed method and recent related studies.   

Micro-Yield- 
Modeling 

Macro-Yield-Modeling 

[16–18] [19,20] Proposed 
Method 

Required Data Detailed 
information, e.g. 
different classes of 
defect categories, 
layouts, and process 
variations of circuit 
design 

large a priori 
factors such as 
product yield rates 
(time series). 

large a priori 
factors for each 
batch as follows: 
production paths, 
number of raw 
products, and 
number of 
observed defective 
products 

Method Using Deep learning Using fuzzy 
collaborative 
forecasting 

Maximum 
likelihood (EM- 
Based algorithm) 

Manufacturing 
type 

Single/Continuous 
flow 

Single/Continuous 
flow 

Batch 
production 
system 

Limitations Required 
prohibitively large 
data sets and long 
computational time 

Required a 
particular 
statistical model 
from human 
expert for each 
manufacture flow. 

Unsuitable for 
continuous flow  
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• The proposed method uses only common production data, and 
therefore it is considered more lightweight and inexpensive 
compared with recent deep-learning methods. 

The remainder of this paper is organized as follows. In Section 2, we 
review existing approaches of production yield-rate prediction. In Sec
tion 3, we describe the maximum likelihood estimation of per-machine 
yield rates based on the observation of defective products. In Section 4, 
we detail the proposed method to predicting the per-batch yield rates 
based on the estimated per-machine yield rates. In Section 5, we discuss 
the experiment and simulation design, as well as the implications of our 
approach. Finally, the last section concludes the paper and proposes 
directions for future research. 

2. Related work 

It is essential and beneficial for manufacturers to accurately estimate 
the yield rates of their production. In terms of yield-rate prediction, 
manufacturers that adopt single/continuous production systems usually 
have a large homogeneous dataset for their products. This is because a 
single production system is associated with a set of machines, which are 
organized to manufacture a single type of product [29]. By contrast, 
manufacturers that adopt batch production systems usually have large 
heterogeneous datasets for their products. These systems handle a large 
variety of products that require different sets of production stations and 
machines [4]. Typically, each batch is considered independent and may 
not be associated with other batches. Thus, each batch production 
process usually generates a small dataset. Regardless of using single/
continuous or batch production, it is possible to estimate the production 
yield rate by using actual per-machine yield rates. Estimating the actual 
per-machine yield rates is a difficult challenge in practice [12–15]. 

Even though per-batch production yield-rate prediction has received 
little attention, several recent studies have been concerned with the 
yield-rate prediction for single/continuous production [16–20], as 
summarized in Table 1. These studies can be classified as either 
macro-yield modeling or micro-yield modeling [21]. The former con
siders only large a priori factors, whereas the latter considers detailed 
information, such as different classes of defect categories, layouts, and 
process variations of circuit design. 

Many recent macro-yield-modeling approaches utilize time-series 
data as input to predict the production yield rate. Chen and Chiu [19] 
proposed an approach based on time-series production data that uses an 
interval-fuzzy-number-based fuzzy collaborative forecasting scheme to 
predict the DRAM yield rate. Their approach performed well, with a 
mean absolute percentage error (MAPE) of less than 2.17 %. Chen and 
Wu [20] proposed a similar approach, which predicts the DRAM yield 
rate using fuzzy collaborative forecasting, and only requires time-series 
production data. Although this approach requires simple data, human 
experts should construct the fuzzy yield forecast. Therefore, manufac
turers that offer multiple customized products in large numbers of 
batches may find this approach excessively effort-intensive. 

Most recent studies based on micro-yield-modeling adopt deep- 
learning methods. Jun et al. [16] proposed constructing a model that 
predicts defects in the production process. This approach requires 
several variables from the production process, such as temperature, 
humidity, and other production variables. Initially, each product piece is 
labeled as either defective or good through machine learning. Subse
quently, a recurrent neural network is used to analyze the time-series 
data and predict the feature data. Finally, a machine learning algo
rithm is used to classify each piece based on the previous steps. This 
approach could be used to improve future yield by using predictions to 
reduce the occurrence of defects. The authors reported that this 
approach can improve yield by approximately 8.7 % in a continual 
process. Two similar approaches have recently been proposed [17,18]. 
With the abundance of monitored data obtained from the manufacturing 
process, the production yield rate can be predicted using these 

approaches. However, the computational cost is prohibitively high 
because deep learning is used [30]. Most importantly, it is quite difficult 
to directly reuse these approaches in other domains and manufacturing 
processes. This is because important manufacturing parameters should 
be identified, and the prediction model should be reconstructed and 
justified. 

Most large-scale manufacturers may invest in a large number of 
suitable sensors to obtain production data [9,31], including actual 
per-machine yield-rate data. They can then develop a per-batch yiel
d-rate prediction system based on existing deep-learning approaches. 
Unfortunately, small- and medium-scale manufacturers may have 
limited resources for obtaining actual per-machine yield-rate data. 
Therefore, they should use other inexpensive and lightweight ap
proaches. Compared with existing approaches, our approach can pro
vide highly accurate predictions without requiring an excessive amount 
of resources. Accordingly, all manufacturers can easily use it. 

The EM algorithm is the core technique of the proposed yield-rate 
prediction approach. The challenge of using the EM algorithm is that 
it has several limitations, such as slow convergence and convergence to 
local optima [27,28]. It has been demonstrated that the initial values of 
the EM parameters may lead to slow convergence [27,28,32,33]. The 
EM may also stop at some point before reaching the optimal likelihood. 
Therefore, it is suggested that the appropriate initial values of the EM 
parameters be determined. It is also suggested that an adequate number 
of iterations be determined to obtain the maximum likelihood. Several 
prior studies have suggested several ways to mitigate the limitations of 
the EM algorithm. For example, Shireman et al. [34] compared five 
techniques for obtaining starting values: random starting values, the 
K-means clustering technique, the iteratively constrained EM technique, 
the agglomerative hierarchical clustering, and the sum scores technique. 
Their simulations demonstrated that the technique involving random 
values is recommended if analyses should be run quickly, and the iter
atively constrained EM technique is preferable to obtain the best results. 
In the proposed method, we use constrained least squares to obtain the 
proper initial values. Furthermore, we determined a stopping criterion 
based on the closest result to the maximum likelihood. In addition, our 
mathematical model uses Bernoulli trials, which are well suited to the 
EM algorithm [35]. This is because a closed-form solution for the 
parameter is available at the M-step. 

3. Maximum-likelihood estimation of per-machine yield rates 

The notations used in this paper are defined in Tables 2 and 3. 
Specifically, Table 2 contains all notations with previously known values 

Table 2 
List of notations with previously known values.  

Notation Description 

I  The total number of batches in the manufacturing process 
Ni  The starting number of pieces in the ith batch 
Jin  The number of manufacturing steps before the nth piece being discarded 

as defective or fully completing the process of the ith batch 
yin  The condition of nth piece (of the ith batch in the manufacturing process) 

observed to be defective (value of 1) or in good condition (value of 0), 
Ci  The number of manufacturing steps required to completely process the 

ith batch 
li  The actual yield rate of the ith batch (ground truth). 
bij  The number of defective pieces observed in the jth manufacturing step of 

the ith batch. 
Sm  The set of machine indexes in (i,j,k) indexes (as tuple elements) of all 

batches; which are the machines in kth manufacturing step of the ith 
batch (where defective pieces are observed in the jth manufacturing step) 

mik  The machine used in the kth manufacturing step of the ith batch 
fim  The number of good pieces at the end of the manufacturing process of the 

ith batch that uses machine m 
rim  How many times machine m is used in the manufacturing process of the 

ith batch.  
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that can be extracted from real-world data, whereas Table 3 contains all 
notations, the initial values of which are unknown and are to be esti
mated later. In our study, we make several assumptions that are sum
marized as follows:  

• We assume that the actual per-machine yield rates do not change in a 
short period.  

• We assume that all defects are caused by production machines; in the 
real world, a defective product may be affected by several factors, 
including the quality of raw materials and the human operator of the 
production process [36].  

• We assume that defective pieces are observed at a particular 
manufacturing step with inspection equipment, and the defects could 
have occurred before this step. This is because inspections can only 
be conducted in some manufacturing steps. Therefore, when a piece 
becomes defective in a manufacturing step, it will go through sub
sequent manufacturing steps until found by the next inspection step. 
This assumption can affect the per-machine yield rate estimation for 
a manufacturing sequence with few inspection devices. With this 
assumption, the proposed method is very likely to overestimate the 
per-machine yield rate of the manufacturing step with actual low 
yield and to underestimate those of the other manufacturing steps 
with actual good yields. However, the estimation accuracy improves 
when the number of batches increases.  

• We assume that the observed defective pieces in a step will be 
removed, and only the good pieces (including the unobserved 

defective pieces) will be processed in the next step. After identifying 
the defective intermediate components or final products, manufac
turers generally utilize a smart approach to determine whether the 
defective pieces should be reworked or disposed [37]. However, this 
assumption is based on FPY [11], which removes the pieces from the 
manufacturing process right after it is observed as defective. 

To accelerate the production of large quantities of products, manu
facturers may divide the manufacturing process into several jobs called 
batches. Then, each batch is tied to a batch number based on its bill of 
operation (BoO) [4] for future reference, where the BoO contains oper
ational information, such as the sequence of stations for each batch. 

Fig. 1 shows the processing of a batch of products by any machine in 
a station described in the BoO at the time of manufacturing. However, 
manufacturers can use their machines for many purposes. Any machine 
can be used by one or several BoOs in any of their sequences. Moreover, 
a batch may use the same machine more than once in its sequence if that 
batch requires some stations to be revisited. 

Manufacturers use quality inspection equipment to control the pro
duction of each batch [38]. However, manufacturers attempt to balance 
the ability to control production quality and to control production cost 
[15]. Therefore, the inspections can only be carried out in a few 
manufacturing steps. Fig. 1 shows an example in which several stations 
and machines are involved in the production process, and the in
spections could only be carried out at Station W and Station Z. Conse
quently, we expect no defective pieces to be observed by machines at 
other stations. Let us consider batch C1 in this example, as shown in 
Fig. 2. The defective pieces can only be observed in Mch-2 of Station W 
and Mch-6 of Station Z. It should be noted that the final manufacturing 
step is assumed to have the inspection equipment for product quality 
control. 

Although a manufacturer may process many batches daily, each 
machine can only handle a single batch at a time, including the in
spection equipment. Accordingly, for each defective piece observed by a 
machine in the jth manufacturing step, all machines in the previous 
manufacturing steps, including the current one, are suspects (repre
sented as the kth manufacturing step). That is, the suspect machines are 
those that may have produced defective pieces. For example, as shown 
in Fig. 2, inspection devices are installed on Mch-2 and Mch-6. In this 
case, Mch-2 as a machine in the second manufacturing step (j = 2) de
tects three defective pieces, which may have been generated by any 
previous machines, including the current one. Therefore, Mch-3 and 
Mch-2 (represented as the kth suspect machines) constitute the set of 
suspect machines for the observed defects. In another example, Mch-6 in 
the fourth manufacturing step (j = 4) also detects one defective piece. In 
this case, Mch-3, Mch-2, Mch-4, and Mch-6 constitute the set of suspect 
machines for the observed defects. Thus, it is possible to estimate the 
yield rate of each production machine based on the observed defective 
pieces in each manufacturing process for each batch. 

In this study, we assume that the observed defective pieces in a step 
are removed, and only the good pieces will be processed in the next step. 
Accordingly, the total number of defective products in a batch is equal to 
the sum of the observed defective pieces in each manufacturing process. 
Therefore, in each manufacturing process, the number of defective 
pieces can be estimated from the yield rate of each machine through 
which the product passes (let the variable be θ). Accordingly, based on 
the FPY theory, we designed a likelihood function for each 
manufacturing step, which is used to estimate the per-machine yield 
rates, as shown in (4). Meanwhile, we provide Eqs. (1)–(3) to explain 
Eqs. (4) step by step. 

There are several zink that affect each yin, given machine yield rates θ. 
For example, if yin observed as good pieces (yin = 0), the corresponding 
zink will all be 0; otherwise, one of the corresponding zink will be 1. 
Accordingly, let Y be the set of yin of all batches (ranging from 1 to I), 
and Z be the set of zink in each manufacturing step in all batches (ranging 
from 1 to I). Then, the complete likelihood function for Y and Z condi

Table 3 
List of notations with unknown initial values.  

Notation Description 

P(Y, Z|θ) The complete likelihood function for Y (set of the piece conditions 
at each step of all batches) and Z (set of the indicator variable of a 
machine causing defective pieces in each manufacturing step in 
all batches) conditioned on the machine yield rates θ.  

zink  The indicator variable (∈ {0,1}) of the nth piece of the ith batch 
observed to be defective due to the machine used in the kth 
manufacturing step. For example, if zink = 1, then the nth piece of 
the ith batch is defective due to this kth machine.  

FD(i, n) The likelihood function of the defect rate if the nth piece of the ith 
batch is observed to be defective in a manufacturing process 

FG(i, n) The likelihood function of the yield rate if the nth piece of the ith 
batch is observed to be a good piece in a manufacturing process 

Pik  The yield rate of a machine in the kth manufacturing step of the 
ith batch (the probability that a piece of product will be good 
when using the machine associated with the kth manufacturing 
step of the ith batch). 

qik  The natural logarithm of Pik  

θ  The set {qik|(1 ≤ i ≤ I) ∧ (1 ≤ k ≤ Ji) }

Pr(m) The yield rate of machine m (the probability of obtaining good 
pieces by using machine m). 

dm  The total expected number of defective pieces generated by 
machine m in every manufacturing step in all batches. 

gm  The total expected number of good pieces generated by machine 
m in every manufacturing step in all batches. 

P
(
zink = 1

⃒
⃒yin, θ

)
The likelihood that the kth manufacturing step of the ith batch 
causes the nth piece to be defective (value of 1) with the given θ  

E[zink ] The expectation that kth manufacturing step causes the nth piece 
of the ith batch to be defective 

eijk  The expected number of defective pieces generated in the kth 
manufacturing step when any defective pieces of the ith batch are 
observed in jth manufacturing step 

hijk  The expected number of good pieces produced by the kth 
manufacturing step, in which these pieces are later observed as 
defective in the jth manufacturing step (an inspection step) for 
the ith batch. In other words, the pieces become defective in one 
of the subsequent manufacturing steps after the kth 
manufacturing step, and then they are observed as defective in 
the jth manufacturing step 

xm  The total number of potential defective pieces generated by 
machine m in every manufacturing step in all batches. 

acc  The average accuracy of per-batch yield-rate prediction.  
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tioned on the machine yield rates θ can be represented as P(Y, Z|θ). 
Based on this, we can define Y =

{
yin
⃒
⃒ i, n ∈ N & 1 ≤ i ≤ I & 1 ≤ n ≤

Ni
}

and Z = {zink | i, n, k ∈ N & 1 ≤ i ≤ I & 1 ≤ n ≤ Ni }. Then, P(Y,Z|θ)
can be calculated based on each piece in each batch of the 
manufacturing process, as follows: 

P(Y, Z|θ) =
∏I

i=1

∏Ni

n=1

(
FD(i, n)yin × FG(i, n)1− yin

)
, (1)  

where the FD(i, n) is the likelihood function of the defect rate, whereas 
the FG(i, n) is the likelihood function of the yield rate. The FD(i, n) and 
FG(i, n) are defined as follows: 

FD(i, n) =
∏Jin

k=1

(

(1 − Pik)
∏k− 1

s=1
Pis

)zink

, (2)  

FG(i, n) =
∏Jin

k=1
Pik. (3) 

Several product pieces are manufactured in each batch. Therefore, 
the likelihood for each batch is calculated based on the observed con
dition of each piece. The observed condition of a product piece (defec
tive or in good condition) is denoted as yin. Therefore, based on (1), if the 
nth piece is observed to be good (yin = 0) in the jth step of the 
manufacturing process, then the calculation is subject to FD(i, n). 
Otherwise, if the nth piece is observed to be defective (yin = 1) in the jth 
step of the manufacturing process, then the calculation is subject to 
FG(i, n). 

Subsequently, FD is calculated based on the defect rate of the pro
duction machines (represented as 1 − Pik), as shown in (2). In each 
manufacturing process, the likelihood is the defect rate of the current 
manufacturing process (1 − Pik) multiplied by the yield rate of the pre

vious production machines (
∏k− 1

s=1
Pis). FD can be used to estimate the in

dicator variable of the nth piece of the ith batch observed to be defective 
owing to the machine used in the kth step, and the indicator variable is 
denoted by zink. Meanwhile, FG is calculated based on the yield rates of 
the production machines, as shown in (3). The calculation is straight
forward, involving multiplication of the production yield rates (denoted 

by Pik) of all the machines that were used in a specific batch. 
As shown in Fig. 1, because the BoO only specifies the production 

plan that uses a station sequence to process each batch, the manufac
turer must assign an available machine at each station in the station 
sequence to the batch during production. In (2) and (3), the yield rate of 
each machine (PM) is mapped using the i; k index, which yields the no
tation PM(i;k). However, this notation complicates the equation. There
fore, we simplify PM(i;k) as Pik to improve readability. Finally, the most 
detailed version of our equation of P(Y,Z|θ) is given in (4), as follow: 

P(Y,Z|θ) =
∏I

i=1

∏Ni

n=1

((
∏Jin

k=1

(

(1 − Pik)
∏k− 1

s=1
Pis

)zink
)yin

×

(
∏Jin

k=1
Pik

)1− yin )

.

(4) 

Accordingly, given that our objective is to estimate the yield rate of 
each machine, the complete likelihood function in (4) can be used to 
estimate the defective pieces produced by each machine; this can sub
sequently be used to estimate the yield rate of each machine. Finally, 
another reason for using EM is that it is well suited for solving the 
mathematical model of the problem in (4). 

4. Proposed method 

Because our approach is related to unknown or missing per-machine 
yield-rate data, we propose a new EM-based algorithm whereby the 
estimated per-machine yield rates can be used to make predictions. In 
the proposed method, the per-machine yield rates are estimated by 
iterating the EM algorithm until convergence is attained. The overall 
procedure of our approach is shown in the activity diagram in Fig. 3. 
Specifically, first, in step (a), we should preprocess and clean the raw 
data, and then guess the initial per-machine yield rates in step (b). Step 
(h) improves the estimation of the yield rate of each machine. It is 
calculated based on the expected number of good pieces and the ex
pected number of defective pieces produced by each machine. Both 
variables are estimated based on the observed defective pieces in step 
(c). Because both variables can be calculated independently, we use the 
parallelism (bar) symbol after step (c). The expected number of good 
pieces can be sequentially calculated by steps (e), (f), and (g), and the 
expected number of defective pieces can be calculated by step (d). The 
bottom bar symbol indicates that we should use both variables in step 

Fig. 1. Example involving three bills of operation (A to C) that use four stations (W to Z) to produce four batches (A1 to C1).  

Fig. 2. Illustration of suspect machines generating defective pieces.  
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(h). Finally, when the EM iteration stops in step (i), the future per-batch 
yield rates can be predicted using the previously estimated per-machine 
yield rates. 

The hyperparameters in this approach are the number of iterations 
and the convergence threshold. We limit the stopping criterion to a 
threshold of 0.001. This implies that the result of current iteration is very 
close to that of the previous iteration. Fig. 4 shows that a maximum 
number of iterations of approximately 60–100 are sufficient to obtain 
the optimal value (near the convergence threshold). The details of the 
algorithm are explained in the following subsections. 

4.1. Preprocessing 

Because the raw production data provided by most manufacturers 
are not clean, data preprocessing and cleaning are required, as indicated 
by step (a) in Fig. 3. Several steps must be executed to preprocess and 
clean the data. First, because the problem involves estimating the yield 
rate of each machine, we can exclude manufacturing process data 

related to manual or human labor. Second, because the quality inspec
tion equipment is only installed in several machines, the observed 
defective pieces are set to zero for other machines, where it is impossible 
to observe defective pieces. Third, a manufacturing process may be 
divided into two or more sessions, which may result in the addition of 
several distinct datasets related to the same manufacturing process. To 
address this problem, we must merge these sessions into one session. 
Finally, an example of the required preprocessing based on Fig. 1 is 
summarized in Table 4. 

4.2. Initial per-machine yield rates 

Because the initial per-machine yield rates in the EM algorithm are 
unknown, we must estimate the yield rates of all the machines used in 
the manufacturing process, as indicated by step (b) in Fig. 3. In addition 
to random guessing, several approaches can be used to estimate the yield 
rates. For example, we can use constrained least squares to generate the 
initial per-machine yield rates based on the per-batch yield rates, as 
follows: 

arg min
θ

∑I

i=1

(
∑Ci

k=1
qik − lnli

)2

(5)  

subject to qik ≤ 0. 

4.3. M-Step 

The yield rates θ are the initial input for the E-step of the proposed 
method. Subsequently, the output of E-Step is used to improve the yield- 
rate estimation in M-Step, which is the objective of each iteration, as 
indicated by step (h) in Fig. 3. The yield rate of a particular machine is 
the percentage of good pieces among all pieces generated by the ma
chine. Therefore, the objective of each iteration can be expressed as 
follows: 

Pr(m) =
gm

gm + dm
. (6)  

4.4. E-Step 

To obtain dm and gm, we must estimate the number of defective 
pieces produced by suspect machines, as indicated by step (c) in Fig. 3. 
The proposed method is based on the principle of likelihood. In the real 
world, the yield rates of most machines used in production should be 
close to 0.999. However, when inspection equipment observes defective 
pieces, all the previous machines, including the current machine, which 
are used to process a batch, are suspects. Therefore, we expect the shared 
probability of defective pieces to be distributed among the suspect 
machines based on their yield rates. A particular machine could have a 
lower yield-rate estimation if multiple batches have many defective 
pieces after this machine is used. Consequently, if any defective pieces 
are observed in each manufacturing step of each batch, we must first 
estimate the likelihood that each particular machine is responsible for 

Fig. 3. Activity diagram of the proposed method to predicting the per-batch 
yield rates. 

Fig. 4. MSE for each iteration in preliminary experiments.  

Table 4 
Example of required production data.  

Batch 
Number 

Production 
Sequence 

Machine # of processed 
pieces 

# of observed 
defective pieces 

Batch A1 1 Mch-1 10 0  
2 Mch-5 10 1 

Batch A2 1 Mch-1 32 0  
2 Mch-6 32 3 

Batch B1 1 Mch-2 100 0  
2 Mch-3 100 5  
3 Mch-4 95 0  
4 Mch-6 95 9 

… … … … …  
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that defect (zink) by using (4). Hence, we use (7) to calculate the likeli
hood of the kth manufacturing step causing the nth piece of the ith batch 
to be defective, which is represented as P

(
zink = 1

⃒
⃒yin, θ

)
. 

P(zink = 1|yin, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0; ifyin = 0

(1 − Pik)

(
∏k− 1

s=1
Pis

)

∑Jin

t=1

(

(1 − Pit)

(
∏t− 1

u=1
Piu

)); ifyin = 1
(7) 

For each piece observed to be defective in the jth manufacturing step, 
each particular manufacturing step is probably suspected. Therefore, the 
expected number of defective pieces produced by each suspect machine 
can be calculated as follows: 

E[zink] = 0 ∗ P(zink = 0|yin, θ) + 1 ∗ P(zink = 1|yin, θ)
E[zink] = P(zink = 1|yin, θ)

(8) 

For each manufacturing step of the ith batch, more than one piece 
may be observed to be defective. Consequently, several observed 
defective pieces have the same E[zink]. Subsequently, we must estimate 
the expected number of defective pieces for each suspect machine. 
Therefore, the likelihood estimation in (8) can be multiplied by the 
number of defective pieces observed in that manufacturing step, as 
follows: 

eijk = E[zink] × bij. (9) 

Then, to obtain dm, we can combine eijk for each machine m in each 
manufacturing process from all batches, as indicated by step (d) in 
Fig. 3. Commonly, a machine m is used in several manufacturing steps, 
which are registered in the set of (i,j,k) indexes of machine m, as in (10). 
Accordingly, we can determine dm as in (11). 

Sm = {(i, j, k)|∀mik = m}, (10)  

dm =
∑

(i,j,k)∈Sm

eijk. (11) 

It should be noted that gm is associated with fim and xm. The value of 
fim can be extracted from the data. However, to obtain xm, we must first 
calculate the number of potential defective pieces in each manufacturing 
step, as in step (e) in Fig. 3; this can be expressed as follows: 

hijk =

{
0; ifj = k

hij;k+1 + eijk; ifj > k (12) 

Next, we can combine the hijk of each machine in each manufacturing 
process of all batches to obtain xm, as in step (f) in Fig. 3, as follows: 

xm =
∑

(i,j,k)∈Sm

hijk. (13) 

Subsequently, as the values of xm and fim are known, we can calculate 
gm, as in step (g) in Fig. 3. gm is related to a production sequence in which 
a particular machine may be used more than once. Therefore, 

gm = xm +

(
∑I

i=1
fim⋅rim

)

. (14)  

4.5. Stop condition 

The EM algorithm continues to iterate until a stopping condition is 
satisfied. Two stopping conditions can be used: a convergence threshold 
and the maximum number of iterations. The difference between the per- 
machine yield rates in the current iteration and those in the previous 
iteration is calculated using the mean square error (MSE) [28]. When the 
MSE is lower than the convergence threshold, the stopping condition is 
met; otherwise, if the number of iterations reaches the defined 
maximum number of iterations, the algorithm is stopped. In our study, a 

threshold of 0.001 difference is used to stop the search for a better so
lution. Based on our observation in preliminary experiments, a 
maximum number of iterations of approximately 60–100 is deemed 
sufficient to stop the algorithm from iterating. This does not have any 
significant influence in further iterations, as shown in Fig. 4. 

4.6. Prediction of per-batch yield rates 

At the beginning of our approach, for each week’s data, we must 
estimate the yield rate of each machine. We assume that the per- 
machine yield rates estimated using the production data are a reliable 
basis for predicting the production yield rates. Consequently, the result 
of our approach can be used to predict the production yield rates, as 
shown in step (i) in Fig. 3. Based on the FPY, the yield rate of a batch is 
equal to the product of all the machine yield rates used by the batch, 

which is expressed as 
(∏Ci

j=1Pij

)
. In this case, Pij is the per-machine yield- 

rate estimation of the jth manufacturing step of the ith batch. To 
calculate the average prediction accuracy of all batches (denoted by 
acc), we need li which is the actual yield rate of the ith batch. Therefore, 
the average prediction accuracy of all batches in a particular week can 
be expressed as follows: 

acc =

∑I

i=1

(

1 −

⃒
⃒
⃒
⃒
⃒

(
∏Ci

j=1
Pij

)

− li

⃒
⃒
⃒
⃒
⃒

)

I
. (15) 

In this study, we used data from only one week to predict the pro
duction yield rates in the following weeks, up to five consecutive weeks. 
However, in the future, the production process may use a machine that is 
not used in the current week and does not have a yield-rate estimate. 
Although we can use older production data for that particular machine, 
to simplify the experiment, we ignore this case and exclude future 
production batches that use any machine with no yield-rate estimation 
in the current week. 

5. Experiments and discussion 

We used data from T-company (70-week data) to evaluate the pre
diction performance of the proposed method, as described in Subsection 
5.1. To explain the high accuracy of the proposed method, we conducted 
several simulations, as described in Subsection 5.2. Then, we discuss the 
proposed method based on the experimental and simulation results. 

5.1. Experimental results using T-Company data 

In our study, we used a large, real-world, 70-week dataset from T- 
company, containing information regarding its manufacturing process. 
The statistics of these real-world data are summarized in Table 5. To 
evaluate the performance of our approach, we used 1-week data to 
construct our prediction model, which was subsequently used to predict 
the average per-batch yield rates for the following five weeks. 

As shown in Fig. 5, the predicted per-batch yield rates for week 1 
have an average accuracy of 91.86 %. Moreover, the results indicate that 
the proposed method can do predictions for weeks 2–4 (the next month) 
with an average accuracy of over 90 %. However, the predictions for 
weeks 3 and beyond are more uncertain because of a sharp increase in 

Table 5 
Statistics of T-Company data for up to 70 weeks.  

Description Min Max Mean Stdev 

Number of machines used 194 250 222 10.2 
Number of batches 287 1075 747 154.3 
Defective pieces in a batch 0 163,072 1140 3,325.0 
Number of steps in a batch 1 59 21 7.0 
Inspection steps in a batch 1 % 9 % 8 % 1 %  
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the standard deviation. The accuracy distribution of the per-batch pre
diction could be seen in Table 6. 

As seen in Fig. 6, the plots for the five predictions (weeks 1–5) are 
highly similar, explaining the high similarity of the prediction accuracy 
values in Fig. 5. Moreover, the prediction accuracy for week 5 is as low 
as 79 % in some rare cases. Thus, the standard deviation of the predic
tion for the fifth week is larger. In Subsection 5.3, we will discuss the 
prediction accuracy changes. 

5.2. Simulations of per-machine yield rates 

For most manufacturers, including T-company, data regarding actual 
per-machine yield rates are unavailable because it is impractical to use 
quality inspection equipment in all production sequences. Therefore, we 
performed simulations using generated per-machine yield rates and 
production data. In these simulations, we used production data to esti
mate the per-machine yield rates. Subsequently, we performed a sensi
tivity analysis to evaluate the performance of our approach for each 
manufacturing dataset of a given size. We used several variables in the 
experiments: the set of machines (50, 250, and 500 machines), the set of 
batches (500–5000 batches in increments of 500, and a special set of 10 
batches at minimum), the set of average of 20 batch steps, and the set of 
average inspection ratios of 10 % in each batch. The batch production 
paths and the number of pieces, including defective pieces, were 
included in each batch dataset. Therefore, the datasets can be classified 
as follows in terms of size: small (<=1500 batches), medium (>1500 
and <=3500 batches), and large (>3500 batches). 

5.2.1. Machine and batch generation 
At the start of the simulation, the per-machine yield rates were 

generated; then, the batches were generated based on the machine data. 
In one set of machine simulations, we used a random normal distribution 
along with the distribution parameters given in row A in Table 7 to 
determine the yield rate of each machine. Subsequently, we installed 
inspection devices on 30 % of the production machines; these devices 
could be turned off by manufacturers during production for whatever 
reason. 

After obtaining the machine data, we generated batch attributes, 
namely, the number of batch steps, number of raw pieces, and number of 
inspections in a batch, as indicated in rows B, C, and D, respectively, in 

Table 8. After generating the number of steps, we randomly assigned 
inspection machines to several steps (based on the combinations 
explained in Subsection 5.2); the remaining steps featured random 
“normal machines.” In this case, a machine could be used more than 
once to process a particular batch. Then, the sequence of the machine in 
the batch steps was shuffled, but the last step involved the inspection 
machines. 

Second, we generated the number of defective pieces in each step. 
Specifically, we randomized the yield rate of each machine by approx
imately ±10 % of its original yield rate and calculated the number of 
defective pieces from the current number of raw pieces and the modified 
machine yield rate. Subsequently, the remaining good pieces were car
ried forward to the next batch step. 

Third, to simulate a real-world manufacturing environment, the 
number of defective pieces in each step was hidden and accumulated 
until the subsequent inspection. The batch steps with the inspection 
machines were the only steps in which the defective pieces could be 
observed, as indicated in row E in Table 8. This is supported by studies in 
which the observation accuracy had a tolerance of 10 %–30 % [39,40], 
implying that only 70 %–90 % of the accumulated defective pieces were 
observed; the remaining unobservable defective pieces were accumu
lated for the next inspection. In this case, the last inspection machine 

Fig. 5. The prediction accuracy of T-Company’s per-batch yield-rate.  

Table 6 
Distribution of the prediction accuracy using T-company dataset.  

Statistics Description Week 1 Week 2 Week 3 Week 4 Week 5 

Minimum 86.73 % 87.08 % 84.39 % 79.53 % 79.65 % 
Mean 91.86 % 91.30 % 90.85 % 90.71 % 90.56 % 
Maximum 95.42 % 94.40 % 93.75 % 93.65 % 94.73 % 
Standard Deviation 1.60 % 1.66 % 1.86 % 2.23 % 2.74 %  

Fig. 6. Average accuracy of each prediction of T-Company data.  

Table 7 
Distribution parameters in each experiment combination.  

# Description Min Max Mean Stdev 

A Machine yield rates* 0 1 0.99 0.1 
B Number of raw pieces 1 20,000 2000 1500 
C Number of batch steps** 5 50 20 or 30 7 
D Number of inspection 

machines in each batch 
*** 

2 
machines 

batch 
length 

10 % or 30 % 
of batch 
length 

2 

E Observation accuracy of 
inspection equipment 

85 % 100 % 90 % 2 %  

* A includes extra 10 % randomness for the yield of each machine. 
** Average of 30 batch steps is only used in Table VIII. 
*** Average of 30 % inspection is only used in Table VIII. 

Table 8 
Average accuracy of the per-machine yield-rate estimation on a manufacturer 
that uses approximately 500 machines.  

Batches 
10 % inspection 30 % inspection 

20 batch steps 30 batch steps 20 batch steps 30 batch steps 

10 25.04 % 37.81 % 26.01 % 38.58 % 
500 88.85 % 85.19 % 89.43 % 86.84 % 
1000 90.15 % 86.17 % 90.87 % 87.72 % 
3000 94.06 % 89.31 % 94.09 % 90.42 % 
5000 94.19 % 89.64 % 94.34 % 91.36 %  
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was set to have a 0 % tolerance, and all remaining defective pieces were 
then observed. 

Finally, each combination was used in our approach to estimate the 
yield rate of each machine. However, because the procedure should be 
applied 10 times for each combination, the machine and batch data were 
regenerated. For this reason, we expected to obtain marginally different 
results in each run, and we used the average as the final result. 

5.2.2. Simulation results 
Fig. 7 shows the results of our simulation experiments, which 

demonstrate the good performance of our approach in estimating the 
yield rates of machines in different simulation combinations. The three 
lines in Fig. 7 represent simulations with approximately 20 batch steps 
and 30 % of the inspection machines. A manufacturer that uses 50 
machines for production may be required to produce fewer than 200 
batches to obtain an accuracy higher than 90 %; a production run with at 
least approximately 1000 batches may be required to obtain the best 
accuracy, as indicated by point A in Fig. 7. However, when a manu
facturer uses approximately 250 machines for production, the manu
facturer may be required to produce at least approximately 1500 batches 
to obtain the best accuracy, as indicated by point B in Fig. 7. Based on 
the operational chart point D in Fig. 7, which is similar to the data model 
of T-company, our approach could provide a good estimate of the per- 
machine yield rates with an average accuracy of 91.84 %. Meanwhile, 
a manufacturer with 500 machines and an average of 20 batch steps in 
its production may be required to produce at least approximately 1000 
batches to obtain an accuracy higher than 90 %, whereas at least 
approximately 3000 batches to obtain the best accuracy, as indicated by 
point C in Fig. 7. The accuracy distribution of the per-machine yield-rate 
estimation on a manufacturer that uses approximately 20 batch steps 
and 10 % inspections, could be seen in Appendix B. 

To better understand the performance of the proposed method, we 
performed extra simulations with different batch lengths (20 and 30) 
and inspection ratios (10 % and 30 % of batch steps in a batch). Based on 
the simulation result on a manufacturer that uses up to 250 machines for 
production, the average accuracy of per-machine yield rates is less 
affected by the average number of batch steps and inspection machines. 
However, when a manufacturer uses a large number of machines 
(approx. 500 machines), these two factors greatly affect the average 
accuracy of per-machine yield-rate estimation shown in Table 8. The 
simulation result shows that, a manufacturer that uses approximately 
500 machines with an average of 30 batch steps leads to a decrease in 
accuracy compared to the one with an average of 20 batch steps. 
However, by using approximately 30 % of the inspection machines in 
each batch, accuracy increases compared with that when only approx
imately 10 % of the inspection machines in each batch are used, as 
shown in Table 8. The accuracy distribution of the per-machine yield- 
rate estimation on a manufacturer that uses approximately 500 

machines, could be seen in Appendix C. 

5.2.3. Validation 
To further validate the simulation results in Fig. 7, the estimated per- 

machine yield rates were used to predict the per-batch yield rates. The 
validation is based on the first assumption in section 3, that the actual 
per-machine yield rates do not change next week. Therefore, we 
generated 5 validation datasets for each simulation combination in 
subsection 5.2.1. 

The results in Fig. 8 shows that, most simulations with only 10 
batches dataset give poor prediction accuracy (close to 0 %). This is very 
reasonable considering that many machines do not have the estimated 
yield rates. Meanwhile, a manufacturer that uses 50 machines for pro
duction may require a dataset with at least 100 batches to obtain a good 
accuracy of per-batch yield rates prediction (>90 %). Whereas, a 
manufacturer that uses approximately 250 machines for production may 
require a dataset with at least 500 batches to obtain a good prediction 
accuracy (>90 %). Furthermore, point A in Fig. 8 also indicates the 
simulation result using a dataset pattern similar to T-Company provide a 
good per-batch yield-rate prediction, which has average accuracy of 
around 91.29 %. This confirms the prediction results with real-world 
data of T-company shown in Fig. 5. However, a manufacturer that 
uses approximately 500 machines may require a dataset with at least 
1000 batches to obtain a good prediction accuracy (>90 %). The dis
tribution of the prediction accuracy using the simulation dataset could 
be seen in Appendix D. 

To see the performance of the proposed prediction method on 
different lengths of batch steps, we analyzed the simulation results of 
approximately 20 batch steps for the per-machine yield-rate estimation. 
The details of the analytical results of our simulation could be seen in 
Table 9. The dataset is divided into two groups, the simple batch group 
(<20 batch steps) and the complex batch group (>20 batch steps). The 
data for 20 batch steps is excluded in this analysis. Based on the 
analytical results, the complex batch group has a larger relative error 
and a smaller accuracy. In other words, the proposed method performs 
better on the simple group. Meanwhile, our prediction tends to under
estimate the future batch yield rate in both groups, as seen in Table 9. 
Similar results could be seen in a similar simulation, which has the same 
settings as in Table 7 except that the randomness of the per-machine 
yield rate to be 1 %. The results confirm that the proposed method 
performs better on the simple group. The difference of this simulation 
result is that, the prediction accuracy could reach close to 99 % with 1 % 
randomness, while it could only reach 89 %–92 % with 10 % random
ness. The details of the simulation result with 1 % randomness could be 
seen in Appendix E. 

5.3. Discussions 

According to the experiments described in Section 5.1, our approach 
accurately predicted the per-batch yield rates. In the case of T-company, 

Fig. 7. Operational chart of the proposed method to estimating the per- 
machine yield rates. 

Fig. 8. Validation of the proposed method to predicting the per-batch 
yield rates. 
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our approach could generate predictions for periods longer than one 
month. However, we suggest that predictions should be made for only 
one to two weeks (or periods) ahead. This is because the standard de
viation increases when predictions are made for periods further into the 
future. This standard deviation increase may be due to the following 
reasons. First, some machines used in future weeks may not be used in 
the week in which the per-machine yield rates were estimated. Hence, 
fewer batches can be predicted. Second, the per-machine yield rates may 
be affected by wear and tear in the following weeks. Therefore, the 
actual per-machine yield rates may be lower than those estimated for a 
certain day. Conversely, some machines may be maintained in the 
following week, thus increasing their actual yield rate. Third, in rare 
cases, our approach predicts the per-batch yield rates at accuracy as low 
as 79 %. In this study, we observed that this was caused by the pro
cessing of a few batches in the week for which the per-machine yield 
rates were estimated, resulting in less accurate estimates of per-machine 
yield rates. This observation is supported by Fig. 9, in which the fluc
tuation of the plot of the number of batches is similar to the plot of the 
week-5 prediction in Fig. 6. 

To further understand whether the proposed method is effective for 
different batch production patterns, we conducted simulations to mea
sure the average accuracy of the estimated per-machine yield rates. 
Then, the simulation of per-machine yield rates could be used as a 
benchmark for the proposed method. The prediction results of T-com
pany’s cases were good because the simulation indicated that the esti
mated average per-machine yield rates were very close to the average 
actual per-machine yield rates, where the estimation error was 
approximately 8 %. However, our simulation indicated that the 
randomness of the dataset increased when more machines were used in 
production. This makes the proposed method less accurate. In this case, 
we suggest that more batches be used to obtain accurate estimates, but 
this could be difficult in practice. Moreover, with the same number of 
machines, long sequences of each batch (longer batch steps) reduce the 
accuracy of our approach. This is due to the effect of the principle of 
likelihood on our E-step, as explained in Subsection 4.4, which may lead 
to underestimation for a greater number of machines when defective 

pieces are observed. 
The accuracy reduction caused by a long sequence can be alleviated 

by increasing the number of batches and the density of inspection sta
tions; however, this increases production costs. Therefore, managers 
must balance estimation accuracy (by having more inspection stations) 
and production cost [41]. Although the number of machines, the num
ber of batches, and the average batch steps are the most important 
variables in our approach, the results indicate that the density of in
spection stations should increase as the average number of batch steps 
increases. 

Based on the simulation results presented in Subsection 5.2.2, our 
approach has a rather low accuracy for small datasets (small number of 
batches). However, it is highly accurate for medium and larger datasets 
(medium and large number of batches). In addition, based on the 
simulation results, our approach is effective for small- and medium-scale 
manufacturers, which use 500 or fewer machines and have an average 
batch sequence with 30 or fewer steps. 

In subsection 5.2.3, per-batch yield-rate prediction is used to validate 
the simulation result of per-machine yield-rate estimation. It shows that 
a very small dataset gives poor prediction accuracy. It is due to that the 
dataset is insufficient to be able to estimate the per-machine yield rates. 
Therefore, the estimation result can hardly be used to predict the per- 
batch yield rates. It is reasonable that the prediction accuracy in
creases as the number of batches in the dataset increases. However, 
based on the simulation results in Fig. 8, the highest accuracy that could 
be reached when predicting per-batch yield rates is approximately 92 %. 
This confirms the prediction result of per-batch yield rates for week 1 
shown in Fig. 5. 

Furthermore, there are practical considerations for the proposed 
method. First, from an economic perspective, using the proposed 
method to predict the per-batch yield rates, manufacturers can plan 
their production in general, including their production costs. Second, 
from a technical perspective, our approach uses simple production data 
that require fewer parameters. Accordingly, most manufacturers can 
easily implement the proposed method with fewer resources. 

6. Conclusions and directions for future research 

The proposed method is a useful solution for predicting the per-batch 
yield rates based on per-machine yield-rate estimations. In our experi
ments, we used one-week data from T-company to build the prediction 
model, then used the model to predict the pre-batch yield rate in the five 
subsequent weeks. We validated the proposed prediction approach with 
a total of 70 weeks of data from T-company. The average accuracy of our 
approach is 91.86 % for the subsequent week, and consistently over 90 
% for five consecutive weeks (over one month). However, it is suggested 
that the per-batch yield rates be predicted for only one or two weeks. To 
determine whether the proposed method is effective for different batch 
production patterns, we used simulations. It was demonstrated that by 
using a generated batch production pattern similar to that of T-com
pany, our approach could provide a good estimation of the per-machine 
yield rates. As a result, the average prediction accuracy of the per-batch 

Table 9 
Average simulated batch yield-rate and predicted batch yield rate regarding batch complexity in A manufacturer that uses approximately 50 machines.  

Batches < 20 batch steps > 20 batch steps  

Actual YR Pred YR Diff* Rel Error** Acc*** Actual YR Pred YR Diff* Rel Error** Acc*** 

10 0.5185 0.4699 0.0486 9.37 % 90.63 % 0.3551 0.2840 0.0711 20.03 % 79.97 % 
500 0.5306 0.4858 0.0448 8.45 % 91.55 % 0.3645 0.3269 0.0376 10.32 % 89.68 % 
1000 0.5435 0.5008 0.0427 7.87 % 92.13 % 0.3812 0.3453 0.0359 9.42 % 90.58 % 
3000 0.5622 0.5214 0.0408 7.26 % 92.74 % 0.4013 0.3663 0.0350 8.72 % 91.28 % 
5000 0.5470 0.5035 0.0435 7.96 % 92.04 % 0.3814 0.3447 0.0367 9.63 % 90.37 %  

* Differences = Actual Yield Rate – Predicted Yield Rate. 
** Relative error = Differences / Actual Yield Rate. 
*** Accuracy = 1 - Relative error. 

Fig. 9. Number of batches for each week in T-Company data.  
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yield rates could reach 91.29 %. Thus, the simulation results confirmed 
the prediction accuracy of the per-batch yield rates using a real-world 
dataset. 

The number of machines, number of batches, and average number of 
batch steps are the most important variables for estimating the per- 
machine yield rates. The simulation results indicated that, the mini
mum number of batches per week should be 100, 500, and 1000 batches 
for the manufacturers with approx. 50, 250, and 500 machines, 
respectively. In addition, our approach is appropriate for any manu
facturer with 500 or fewer machines with an average of 30 or shorter 
batch sequences. The proposed method is reasonable and could be used 
by manufacturers to predict per-batch yield rates. Thus, manufacturers 
can better plan their batch production and control risk. In addition, our 
lightweight approach uses only production data without an excessive 
number of parameters. Therefore, it may reduce management overhead, 
as it requires fewer resources and is simpler to use. Hence, manufac
turers with limited resources can easily implement this approach. 

However, our approach has several limitations related to batch 
specifications and single/continuous production systems (or the 
manufacturing of a similar type). First, our approach estimates the per- 
machine yield rates based on the station sequence. Although this is ac
curate, it may provide unexpected results for fixed sequences of machine 
stations because the machines at the beginning of the sequence are 
necessarily considered suspects. Hence, their yield rates may be lower 
than those of the machines in the final sequence. This implies that un
expected results may be obtained in flow-shop manufacturing (or 
similar). Second, based on the design of our approach, any suspect 

machine is assigned a share of defective pieces based on its current yield 
rate, regardless of its step or station number. These shares of defective 
pieces in each batch are summed into a single value for each machine. 
For this reason, our approach requires the processing of production data 
based on batch specifications. We found that the machines used to 
process different batch specifications may provide different batch yield 
rates. Finally, this study opens the way to further investigate per-batch 
yield rates so that these two limitations may be addressed in future 
research. 
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Appendix 

A Equations list  

Equation Eq. Number 

The simple version of the likelihood 

P(Y, Z|θ) =
∏I

i=1

∏Ni

n=1

(
FD(i, n)yin × FG(i, n)1− yin

)

1 

where  

FD(i, n) =
∏Jin

k=1

(

(1 − Pik)
∏k− 1

s=1
Pis

)

zink  
2 

FG(i, n) =
∏Jin

k=1
Pik  

3 

Complete Likelihood Function 

P(Y, Z|θ) =
∏I

i=1

∏Ni

n=1

⎛

⎝

(
∏Jin

k=1

(

(1 − Pik)
∏k− 1

s=1
Pis

)

zink

)

yin ×

(
∏Jin

k=1
Pik

)

1− yin

⎞

⎠

4 

Constrained Least square 

arg min
θ

∑I
i=1

(
∑Ci

k=1qik − lnli
)

2 

subject to qik ≤ 0  

5 

Updating per-machine yield rates 

Pr(m) =
gm

gm + dm  

6 

Likelihood of kth manufacturing steps generates defective pieces 

P
(
zink = 1|yin, θ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0; ifyin = 0

(1 − Pik)

(
∏k− 1

s=1
Pis

)

∑Jin

t=1

(

(1 − Pit)

(
∏t− 1

u=1
Piu

)); ifyin = 1  

7 

E[zink ] = 0 ∗ P
(
zink = 0

⃒
⃒yin, θ

)
+ 1 ∗ P

(
zink = 1

⃒
⃒yin , θ

)

E[zink] = P
(
zink = 1

⃒
⃒yin, θ

)
8 

Estimation number of the defective pieces 
eijk = E[zink ] × bij  

9 

Set of (i,j,k) indexes 
Sm = {(i, j, k)|∀mik = m}

10 

11 

(continued on next page) 
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(continued ) 

Equation Eq. Number 

Total expectation number of defective pieces 
dm =

∑

(i,j,k)∈Sm

eijk  

The number of potential defective pieces 

hijk =

{
0; ifj = k

hij;k+1 + eijk ; ifj > k  

12 

The total number of potential defective pieces 
xm =

∑

(i,j,k)∈Sm

hijk  

13 

The total expected number of good pieces 

gm = xm +

(
∑I

i=1fim∙ rim

)
14 

The average accuracy of per-batch yield prediction 

acc =

∑I
i=1

(
1 −

⃒
⃒
⃒

(∏Ci
j=1Pij

)
− li

⃒
⃒
⃒

)

I  

15  

B Accuracy distribution of the machine yield-rate estimation (20 batch steps and 10 % inspections)  

Batches 
50 Machines 250 Machines 500 Machines 

Min Avg Max Stdev Min Avg Max Stdev Min Avg Max Stdev 

10 0.00 % 82.34 % 99.98 % 23.64 % 0.00 % 45.54 % 100.00 % 45.02 % 0.00 % 25.04 % 100.00 % 40.39 % 
500 76.43 % 94.85 % 100.00 % 4.02 % 55.63 % 90.44 % 100.00 % 7.68 % 36.80 % 88.85 % 100.00 % 9.62 % 
1000 82.64 % 95.83 % 99.99 % 3.49 % 62.51 % 91.84 % 100.00 % 6.12 % 53.55 % 90.15 % 100.00 % 7.77 % 
3000 82.07 % 96.02 % 100.00 % 3.80 % 69.89 % 94.14 % 100.00 % 4.71 % 71.94 % 94.06 % 100.00 % 4.78 % 
5000 86.02 % 96.16 % 99.99 % 3.86 % 79.78 % 95.41 % 100.00 % 3.85 % 73.41 % 94.19 % 100.00 % 4.60 %  

C. Accuracy distribution of the per-machine yield-rate estimation (500 machines)  

Batches 
20 batch steps 30 batch steps 

Min Avg Max Stdev Min Avg Max Stdev  

10 % inspection 
10 0.00 % 25.04 % 100.00 % 40.39 % 0.00 % 37.81 % 100.00 % 44.67 % 
500 36.80 % 88.85 % 100.00 % 9.62 % 16.87 % 85.19 % 100.00 % 14.40 % 
1000 53.55 % 90.15 % 100.00 % 7.77 % 35.42 % 86.17 % 100.00 % 12.49 % 
3000 71.94 % 94.06 % 100.00 % 4.78 % 54.26 % 89.31 % 100.00 % 10.31 % 
5000 73.41 % 94.19 % 100.00 % 4.60 % 54.49 % 89.64 % 100.00 % 10.72 %  

30 % inspection 
10 0.00 % 26.01 % 99.99 % 40.74 % 0.00 % 38.58 % 99.99 % 44.87 % 
500 39.30 % 89.43 % 100.00 % 8.86 % 36.88 % 86.84 % 99.99 % 11.66 % 
1000 57.75 % 90.87 % 100.00 % 7.06 % 48.42 % 87.72 % 100.00 % 9.79 % 
3000 76.53 % 94.09 % 100.00 % 4.35 % 63.27 % 90.42 % 100.00 % 7.61 % 
5000 63.63 % 94.34 % 100.00 % 4.20 % 67.70 % 91.36 % 100.00 % 7.13 %  

D. Distribution of the per-batch yield rate prediction accuracy using simulation dataset  

Batches 
50 Machines 250 Machines 500 Machines 

Min Avg Max Stdev Min Avg Max Stdev Min Avg Max Stdev 

10 0.00 % 77.41 % 94.41 % 11.24 % n/a n/a n/a n/a n/a n/a n/a n/a 
500 91.65 % 92.17 % 93.02 % 0.31 % 89.28 % 90.49 % 91.48 % 0.39 % 87.99 % 89.31 % 90.70 % 0.40 % 
1000 91.55 % 92.25 % 93.00 % 0.14 % 90.54 % 91.29 % 92.08 % 0.19 % 89.94 % 90.79 % 91.66 % 0.25 % 
3000 91.72 % 92.28 % 92.70 % 0.09 % 91.31 % 92.01 % 92.40 % 0.13 % 91.69 % 92.06 % 92.40 % 0.11 % 
5000 91.88 % 92.22 % 92.50 % 0.07 % 91.80 % 92.21 % 92.51 % 0.08 % 91.63 % 91.97 % 92.23 % 0.09 %  

* The value of “n/a” means that the dataset for building model (machine yield rate estimation) are insufficient for batch yield-rate prediction. 

E Average simulated batch yield-rate and predicted batch yield rate regarding batch complexity 

This simulation results have the same settings as in Table 7 except that the randomness of the per-machine yield rate to be 1 %. The actual yield rate 
is generated in the simulation as the ground truth. Then, the values in the columns of actual or predicted yield rate are the average of the yield rate in 
one-week data.  
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Batches < 20 batch steps > 20 batch steps  

Actual YR Pred YR Diff* Rel Error** Acc*** Actual YR Pred YR Diff* Rel Error** Acc*** 

A manufacturer that uses approximately 50 machines 
10 0.8071 0.7721 0.0350 4.34 % 95.66 % 0.7151 0.6221 0.0930 13.01 % 86.99 % 
500 0.8061 0.7991 0.0070 0.86 % 99.14 % 0.7133 0.7055 0.0077 1.09 % 98.91 % 
1000 0.8101 0.8036 0.0064 0.79 % 99.21 % 0.7191 0.7106 0.0085 1.18 % 98.82 % 
3000 0.8015 0.7940 0.0075 0.94 % 99.06 % 0.7061 0.6970 0.0092 1.30 % 98.70 % 
5000 0.8175 0.8111 0.0064 0.78 % 99.22 % 0.7281 0.7199 0.0082 1.12 % 98.88 %   

A manufacturer that uses approximately 250 machines 
10 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
500 0.8109 0.7996 0.0113 1.40 % 98.60 % 0.7187 0.7179 0.0008 0.11 % 99.89 % 
1000 0.8060 0.7956 0.0104 1.29 % 98.71 % 0.7103 0.7076 0.0027 0.38 % 99.62 % 
3000 0.8055 0.7972 0.0083 1.03 % 98.97 % 0.7110 0.7032 0.0079 1.11 % 98.89 % 
5000 0.8125 0.8052 0.0074 0.91 % 99.09 % 0.7212 0.7148 0.0063 0.87 % 99.13 %   

A manufacturer that uses approximately 500 machines 
10 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
500 0.8071 0.7977 0.0094 1.17 % 98.83 % 0.7134 0.7106 0.0028 0.40 % 99.60 % 
1000 0.8067 0.7970 0.0097 1.20 % 98.80 % 0.7145 0.7131 0.0015 0.21 % 99.79 % 
3000 0.8050 0.7980 0.0070 0.87 % 99.13 % 0.7112 0.7037 0.0075 1.06 % 98.94 % 
5000 0.8115 0.8042 0.0073 0.90 % 99.10 % 0.7197 0.7123 0.0074 1.02 % 98.98 %  

*Differences = Actual Yield Rate – Predicted Yield Rate. 
**Relative error = Differences / Actual Yield Rate. 
*** Accuracy = 1 - Relative error. 
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