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The demand for high-quality customized products compels manufacturers to adopt batch production. With the
ability to accurately estimate batch production yield rates in advance, manufacturers can effectively plan the
batch production process and control the production risk based on the estimated values. The per-batch pro-
duction yield rates can be directly predicted by multiplying the accurately estimated per-machine yield rates
corresponding to a batch. Unfortunately, for most manufacturers, the actual per-machine yield rates are difficult
to estimate owing to a variety factors. Moreover, per-batch yield-rate prediction has received little attention
because recent studies only focused on yield-rate prediction methods for single/continuous production systems.
To address this, we propose an expectation-maximization-based approach to predict per-batch yield rates by
estimating the per-machine yield rates. Based on the data from T-company, the proposed method could predict
the per-batch yield rates for the subsequent week with an average accuracy of 91.86 %, and for five consecutive
weeks with an average accuracy of more than 90 %. To further evaluate the performance of the proposed method
with different batch production patterns, we conducted simulations to obtain the average accuracy of the esti-
mated per-machine yield rates. In the simulations, the average prediction accuracy of the per-batch yield rates
was 91.29 % in the batch production pattern, as in the case of T-company (~250 machines and ~1000 batches
per week), and it increased as the number of batches increased.

1. Introduction

The dynamic nature of market demand compels most manufacturers
to offer high-quality customized products [1,2]. To address this chal-
lenge, manufacturers should respond swiftly to changes in customer’s
demands [3]. Since batch production enables mass production of
high-variety customized products [4], it has been widely used by many
manufacturers all over the world [5]. The major challenge of batch
production involves good production planning because of the manage-
ment complexity, including the factors of numerous products, produc-
tion stations, and machines. One way to better plan batch production
and control risk is to estimate the yield rate of their products accurately.
This also allows manufacturers to adjust their parameters and estimate
as well as evaluate their production [6-9]. In the event that manufac-
turers find it difficult to meet the demands of the customer, manufac-
turers could look for another strategy [10], such as adaptive sourcing,
which could achieve business outcomes while controlling risk. As a
result, the ability to estimate the yield rate of a batch production system
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is important to the modern manufacturing industry.

In batch-production manufacturing, manufacturers should plan the
machines to be used for each batch product. They should also predict the
yield rate of each batch that is manufactured without performing rework
or correction, which is called first-pass yield (FPY) [11]. According to
FPY theory, the yield rate of a production process is equal to the product
of all the machine yield rates involved. As a result, the per-batch pro-
duction yield rates can be directly predicted by accurately estimating the
yield rate of each production machine (per-machine yield rates), and
subsequently using the estimated per-machine yield rates to calculate
future per-batch yield rates. However, the actual per-machine yield rates
are generally difficult to estimate because they are affected by multiple
factors, such as production process drift, environment, and machine
condition, misconfiguration, and age [12-15]. Accordingly, related
studies are scarce, and the problem remains challenging.

Although studies on per-batch production yield-rate prediction are
scarce, several yield-rate prediction methods for single/continuous
production systems have recently been proposed [16-20]. These
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methods can be classified into macro-yield-modeling or micro--
yield-modeling [21]. Table 1 provides a detailed comparison of
macro-yield-modeling and micro-yield-modeling. In
macro-yield-modeling, only large a priori factors are considered (e.g.
time-series data of product yield rates). Therefore, these methods may
ignore the factors of particular products or conditions of the
manufacturing  environment at the time. Conversely, in
micro-yield-modeling, more detailed information is considered, such as
different classes of defect categories, layouts, and process variations of
circuit design. Most recent studies employ micro-yield-modeling and
adopt deep-learning methods [16-18] to predict the yield rates since
they have demonstrated outstanding performance in smart
manufacturing [22] such as fault diagnosis [23] and defect detection
[24]. Moreover, there are a few macro-yield-modeling approaches that
only focus on time series data and utilize fuzzy forecasting methods to
predict the yield rates [19,20]. Unfortunately, these methods cannot be
reused directly in batch production systems, in which the number of
produced pieces is relatively small, and the number of product types is
large compared with the corresponding numbers in single/continuous
production systems. Therefore, the amount of the accumulated pro-
duction data for each batch product may not be sufficient to construct an
efficient yield-rate prediction model, particularly when deep-learning
technologies are adopted.

To address the challenge of small-volume, large-variety production
in a batch production system, we propose a simple macro-yield-
modeling approach to predict the per-batch production yield rates by
using the estimated per-machine yield rates. In this approach, the actual
per-machine yield rates can be calculated based on the number of
observed defective products manufactured by a particular machine.
However, defective products can only be observed using quality in-
spection devices, which are expensive to use for all production machines
[25]. Consequently, manufacturers may reduce the number of inspec-
tion devices if possible, and they should achieve a balance between the
number of inspection devices and the ability to control production
quality [2,15]. Therefore, in practice, it is difficult to determine the
actual per-machine yield rates given a limited number of inspection
devices.

In this study, we developed a novel approach based on the
expectation-maximization (EM) algorithm to estimate the per-machine
yield rates in a production process. We assume that the per-machine
yield rates do not change in the short term, and therefore the per-

Table 1
Comparisons on the proposed method and recent related studies.

Micro-Yield- Macro-Yield-Modeling

Modeling
[16-18] [19,20] Proposed
Method
Required Data Detailed large a priori large a priori

information, e.g.
different classes of
defect categories,
layouts, and process
variations of circuit

factors such as
product yield rates
(time series).

factors for each
batch as follows:
production paths,
number of raw
products, and

design number of
observed defective
products
Method Using Deep learning  Using fuzzy Maximum
collaborative likelihood (EM-
forecasting Based algorithm)
Manufacturing Single/Continuous Single/Continuous  Batch
type flow flow production
system
Limitations Required Required a Unsuitable for
prohibitively large particular continuous flow
data sets and long statistical model
computational time from human

expert for each
manufacture flow.
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machine yield rates can be used to predict future per-batch yield rates.
As a result, one or two weeks of production data are appropriate to
predict the per-batch yield rate for subsequent weeks. The rationale for
using the EM-based algorithm is that it requires relatively simple in-
formation, including production paths, the number of raw products, and
the number of defective products detected by each inspection device, to
estimate the per-machine yield rates. As a result, the proposed method
can be applied to a manufacturer, even though a large number of sensors
to detect the production status or machine production conditions, such
as temperature, humidity, and vibrations, are not available. It should be
noted that the EM algorithm has several limitations, including slow
convergence and convergence to local optima [26-28]. To overcome
these limitations, we used constrained least-squares to obtain appro-
priate initial values, which later improved the maximization of the
likelihood function. Additionally, the proper parameters for the stop-
ping criterion, such as the maximum number of iterations and the
threshold value for MSE, are set based on our preliminary experiments.
The results suggested that approximately 60-100 iterations and an MSE
threshold of 0.001 are sufficient to stop the algorithm.

To validate the efficiency of the proposed method, we used time-
series data from T-company. The datasets contain up to 70 weeks of
real-world production data that were collected through sensors and
human operators; a week of the data contains thousands of batches of
products and more than 200 machines. We used one-week data to build
the prediction model and then used the model to predict the per-batch
yield rate in the subsequent weeks. The results demonstrate that our
approach can predict the per-batch yield rates of the subsequent week
with an average accuracy of 91.86 %, and the production yield rates of
the subsequent five weeks with an average accuracy of more than 90 %.

The real data from T-company only indicate that the proposed
method achieves good prediction accuracy with this particular batch
production pattern. To further understand whether the proposed
method is effective with different batch production patterns, we used
simulations. For each simulation, we set the per-machine yield rates
along with the batch production parameters, and then simulated the
batch production process. Subsequently, we used the proposed EM-
based algorithm to obtain the estimated per-machine yield rates. In
general, if the estimated per-machine yield rates approach closer to the
pre-set per-machine yield rates (ground truth), better prediction accu-
racy is achieved. Therefore, we used the average accuracy of the esti-
mated per-machine yield rates to evaluate the performance of the
proposed method with different batch production patterns. The results
indicated that, by using a batch production pattern similar to that of the
actual data set for T-company (~250 machines and ~1000 batches per
week), the average accuracy of our approach for per-machine yield-rate
estimates is 91.84 %, with a minimum accuracy of 62.51 %, a maximum
accuracy of 100 %, and a standard deviation of 6.12 %. Furthermore, the
average accuracy of our approach for per-batch yield-rate estimates is
91.29 %, with a minimum accuracy of 90.54 %, a maximum accuracy of
92.08 %, and a standard deviation of 0.19 %. The accuracy increased as
the number of batches increased.

The proposed method has several managerial implications. First,
manufacturers can plan the number of additional production pieces for
each production batch using the proposed method. This facilitates the
control of production cost as well as risk. Second, our approach uses only
production data without an excessive number of parameters. Therefore,
it has less management overhead than other recent deep-learning
methods. It is conceivable that manufacturers with limited resources
can easily implement this approach. The contributions of this study are
as follows.

e The proposed method can predict per-batch yield rates with satis-
factory accuracy, as verified using real-world datasets in our
experiments.
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e The proposed method uses only common production data, and
therefore it is considered more lightweight and inexpensive
compared with recent deep-learning methods.

The remainder of this paper is organized as follows. In Section 2, we
review existing approaches of production yield-rate prediction. In Sec-
tion 3, we describe the maximum likelihood estimation of per-machine
yield rates based on the observation of defective products. In Section 4,
we detail the proposed method to predicting the per-batch yield rates
based on the estimated per-machine yield rates. In Section 5, we discuss
the experiment and simulation design, as well as the implications of our
approach. Finally, the last section concludes the paper and proposes
directions for future research.

2. Related work

It is essential and beneficial for manufacturers to accurately estimate
the yield rates of their production. In terms of yield-rate prediction,
manufacturers that adopt single/continuous production systems usually
have a large homogeneous dataset for their products. This is because a
single production system is associated with a set of machines, which are
organized to manufacture a single type of product [29]. By contrast,
manufacturers that adopt batch production systems usually have large
heterogeneous datasets for their products. These systems handle a large
variety of products that require different sets of production stations and
machines [4]. Typically, each batch is considered independent and may
not be associated with other batches. Thus, each batch production
process usually generates a small dataset. Regardless of using single/-
continuous or batch production, it is possible to estimate the production
yield rate by using actual per-machine yield rates. Estimating the actual
per-machine yield rates is a difficult challenge in practice [12-15].

Even though per-batch production yield-rate prediction has received
little attention, several recent studies have been concerned with the
yield-rate prediction for single/continuous production [16-20], as
summarized in Table 1. These studies can be classified as either
macro-yield modeling or micro-yield modeling [21]. The former con-
siders only large a priori factors, whereas the latter considers detailed
information, such as different classes of defect categories, layouts, and
process variations of circuit design.

Many recent macro-yield-modeling approaches utilize time-series
data as input to predict the production yield rate. Chen and Chiu [19]
proposed an approach based on time-series production data that uses an
interval-fuzzy-number-based fuzzy collaborative forecasting scheme to
predict the DRAM yield rate. Their approach performed well, with a
mean absolute percentage error (MAPE) of less than 2.17 %. Chen and
Wu [20] proposed a similar approach, which predicts the DRAM yield
rate using fuzzy collaborative forecasting, and only requires time-series
production data. Although this approach requires simple data, human
experts should construct the fuzzy yield forecast. Therefore, manufac-
turers that offer multiple customized products in large numbers of
batches may find this approach excessively effort-intensive.

Most recent studies based on micro-yield-modeling adopt deep-
learning methods. Jun et al. [16] proposed constructing a model that
predicts defects in the production process. This approach requires
several variables from the production process, such as temperature,
humidity, and other production variables. Initially, each product piece is
labeled as either defective or good through machine learning. Subse-
quently, a recurrent neural network is used to analyze the time-series
data and predict the feature data. Finally, a machine learning algo-
rithm is used to classify each piece based on the previous steps. This
approach could be used to improve future yield by using predictions to
reduce the occurrence of defects. The authors reported that this
approach can improve yield by approximately 8.7 % in a continual
process. Two similar approaches have recently been proposed [17,18].
With the abundance of monitored data obtained from the manufacturing
process, the production yield rate can be predicted using these
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approaches. However, the computational cost is prohibitively high
because deep learning is used [30]. Most importantly, it is quite difficult
to directly reuse these approaches in other domains and manufacturing
processes. This is because important manufacturing parameters should
be identified, and the prediction model should be reconstructed and
justified.

Most large-scale manufacturers may invest in a large number of
suitable sensors to obtain production data [9,31], including actual
per-machine yield-rate data. They can then develop a per-batch yiel-
d-rate prediction system based on existing deep-learning approaches.
Unfortunately, small- and medium-scale manufacturers may have
limited resources for obtaining actual per-machine yield-rate data.
Therefore, they should use other inexpensive and lightweight ap-
proaches. Compared with existing approaches, our approach can pro-
vide highly accurate predictions without requiring an excessive amount
of resources. Accordingly, all manufacturers can easily use it.

The EM algorithm is the core technique of the proposed yield-rate
prediction approach. The challenge of using the EM algorithm is that
it has several limitations, such as slow convergence and convergence to
local optima [27,28]. It has been demonstrated that the initial values of
the EM parameters may lead to slow convergence [27,28,32,33]. The
EM may also stop at some point before reaching the optimal likelihood.
Therefore, it is suggested that the appropriate initial values of the EM
parameters be determined. It is also suggested that an adequate number
of iterations be determined to obtain the maximum likelihood. Several
prior studies have suggested several ways to mitigate the limitations of
the EM algorithm. For example, Shireman et al. [34] compared five
techniques for obtaining starting values: random starting values, the
K-means clustering technique, the iteratively constrained EM technique,
the agglomerative hierarchical clustering, and the sum scores technique.
Their simulations demonstrated that the technique involving random
values is recommended if analyses should be run quickly, and the iter-
atively constrained EM technique is preferable to obtain the best results.
In the proposed method, we use constrained least squares to obtain the
proper initial values. Furthermore, we determined a stopping criterion
based on the closest result to the maximum likelihood. In addition, our
mathematical model uses Bernoulli trials, which are well suited to the
EM algorithm [35]. This is because a closed-form solution for the
parameter is available at the M-step.

3. Maximum-likelihood estimation of per-machine yield rates

The notations used in this paper are defined in Tables 2 and 3.
Specifically, Table 2 contains all notations with previously known values

Table 2
List of notations with previously known values.

Notation Description

1 The total number of batches in the manufacturing process

N; The starting number of pieces in the ith batch

Jin The number of manufacturing steps before the nth piece being discarded
as defective or fully completing the process of the ith batch

Yin The condition of nth piece (of the ith batch in the manufacturing process)
observed to be defective (value of 1) or in good condition (value of 0),

C; The number of manufacturing steps required to completely process the
ith batch

I The actual yield rate of the ith batch (ground truth).

by The number of defective pieces observed in the jth manufacturing step of
the ith batch.

Sm The set of machine indexes in (i,j,k) indexes (as tuple elements) of all
batches; which are the machines in kth manufacturing step of the ith
batch (where defective pieces are observed in the jth manufacturing step)

M The machine used in the kth manufacturing step of the ith batch

fim The number of good pieces at the end of the manufacturing process of the
ith batch that uses machine m

Tim How many times machine m is used in the manufacturing process of the

ith batch.
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Table 3
List of notations with unknown initial values.

Notation Description

P(Y,Z|0) The complete likelihood function for Y (set of the piece conditions
at each step of all batches) and Z (set of the indicator variable of a
machine causing defective pieces in each manufacturing step in
all batches) conditioned on the machine yield rates 6.

Zink The indicator variable (€ {0,1}) of the nth piece of the ith batch
observed to be defective due to the machine used in the kth
manufacturing step. For example, if 2 = 1, then the nth piece of
the ith batch is defective due to this kth machine.

Fp(i,n) The likelihood function of the defect rate if the nth piece of the ith
batch is observed to be defective in a manufacturing process

Fg(i,n) The likelihood function of the yield rate if the nth piece of the ith
batch is observed to be a good piece in a manufacturing process

Py The yield rate of a machine in the kth manufacturing step of the
ith batch (the probability that a piece of product will be good
when using the machine associated with the kth manufacturing
step of the ith batch).

qik The natural logarithm of Py

0 The set {qx|(1 <i<D)A(1<k<J)}

Pr(m) The yield rate of machine m (the probability of obtaining good
pieces by using machine m).

dm The total expected number of defective pieces generated by
machine m in every manufacturing step in all batches.

8m The total expected number of good pieces generated by machine

m in every manufacturing step in all batches.
The likelihood that the kth manufacturing step of the ith batch
causes the nth piece to be defective (value of 1) with the given 0

P(Zink = 1]Yin, 0)
E[Zink] The expectation that kth manufacturing step causes the nth piece
of the ith batch to be defective

The expected number of defective pieces generated in the kth
manufacturing step when any defective pieces of the ith batch are
observed in jth manufacturing step

The expected number of good pieces produced by the kth
manufacturing step, in which these pieces are later observed as
defective in the jth manufacturing step (an inspection step) for
the ith batch. In other words, the pieces become defective in one
of the subsequent manufacturing steps after the kth
manufacturing step, and then they are observed as defective in
the jth manufacturing step

The total number of potential defective pieces generated by
machine m in every manufacturing step in all batches.

The average accuracy of per-batch yield-rate prediction.

€ijk

hyjk

Xm

acc

that can be extracted from real-world data, whereas Table 3 contains all
notations, the initial values of which are unknown and are to be esti-
mated later. In our study, we make several assumptions that are sum-
marized as follows:

e We assume that the actual per-machine yield rates do not change in a
short period.

We assume that all defects are caused by production machines; in the
real world, a defective product may be affected by several factors,
including the quality of raw materials and the human operator of the
production process [36].

e We assume that defective pieces are observed at a particular
manufacturing step with inspection equipment, and the defects could
have occurred before this step. This is because inspections can only
be conducted in some manufacturing steps. Therefore, when a piece
becomes defective in a manufacturing step, it will go through sub-
sequent manufacturing steps until found by the next inspection step.
This assumption can affect the per-machine yield rate estimation for
a manufacturing sequence with few inspection devices. With this
assumption, the proposed method is very likely to overestimate the
per-machine yield rate of the manufacturing step with actual low
yield and to underestimate those of the other manufacturing steps
with actual good yields. However, the estimation accuracy improves
when the number of batches increases.

We assume that the observed defective pieces in a step will be
removed, and only the good pieces (including the unobserved
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defective pieces) will be processed in the next step. After identifying
the defective intermediate components or final products, manufac-
turers generally utilize a smart approach to determine whether the
defective pieces should be reworked or disposed [37]. However, this
assumption is based on FPY [11], which removes the pieces from the
manufacturing process right after it is observed as defective.

To accelerate the production of large quantities of products, manu-
facturers may divide the manufacturing process into several jobs called
batches. Then, each batch is tied to a batch number based on its bill of
operation (BoO) [4] for future reference, where the BoO contains oper-
ational information, such as the sequence of stations for each batch.

Fig. 1 shows the processing of a batch of products by any machine in
a station described in the BoO at the time of manufacturing. However,
manufacturers can use their machines for many purposes. Any machine
can be used by one or several BoOs in any of their sequences. Moreover,
a batch may use the same machine more than once in its sequence if that
batch requires some stations to be revisited.

Manufacturers use quality inspection equipment to control the pro-
duction of each batch [38]. However, manufacturers attempt to balance
the ability to control production quality and to control production cost
[15]. Therefore, the inspections can only be carried out in a few
manufacturing steps. Fig. 1 shows an example in which several stations
and machines are involved in the production process, and the in-
spections could only be carried out at Station W and Station Z. Conse-
quently, we expect no defective pieces to be observed by machines at
other stations. Let us consider batch C1 in this example, as shown in
Fig. 2. The defective pieces can only be observed in Mch-2 of Station W
and Mch-6 of Station Z. It should be noted that the final manufacturing
step is assumed to have the inspection equipment for product quality
control.

Although a manufacturer may process many batches daily, each
machine can only handle a single batch at a time, including the in-
spection equipment. Accordingly, for each defective piece observed by a
machine in the jth manufacturing step, all machines in the previous
manufacturing steps, including the current one, are suspects (repre-
sented as the kth manufacturing step). That is, the suspect machines are
those that may have produced defective pieces. For example, as shown
in Fig. 2, inspection devices are installed on Mch-2 and Mch-6. In this
case, Mch-2 as a machine in the second manufacturing step (j = 2) de-
tects three defective pieces, which may have been generated by any
previous machines, including the current one. Therefore, Mch-3 and
Mch-2 (represented as the kth suspect machines) constitute the set of
suspect machines for the observed defects. In another example, Mch-6 in
the fourth manufacturing step (j = 4) also detects one defective piece. In
this case, Mch-3, Mch-2, Mch-4, and Mch-6 constitute the set of suspect
machines for the observed defects. Thus, it is possible to estimate the
yield rate of each production machine based on the observed defective
pieces in each manufacturing process for each batch.

In this study, we assume that the observed defective pieces in a step
are removed, and only the good pieces will be processed in the next step.
Accordingly, the total number of defective products in a batch is equal to
the sum of the observed defective pieces in each manufacturing process.
Therefore, in each manufacturing process, the number of defective
pieces can be estimated from the yield rate of each machine through
which the product passes (let the variable be 6). Accordingly, based on
the FPY theory, we designed a likelihood function for each
manufacturing step, which is used to estimate the per-machine yield
rates, as shown in (4). Meanwhile, we provide Egs. (1)-(3) to explain
Egs. (4) step by step.

There are several z;,; that affect each y;,, given machine yield rates 6.
For example, if y;, observed as good pieces (y;; = 0), the corresponding
2k will all be 0; otherwise, one of the corresponding z;; will be 1.
Accordingly, let Y be the set of y;, of all batches (ranging from 1 to I),
and Z be the set of z;y in each manufacturing step in all batches (ranging
from 1 to I). Then, the complete likelihood function for Y and Z condi-
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Example involving three bills of operation (A to C) that use four stations (W to Z) to produce four batches (A1l to C1).
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Fig. 2. Illustration of suspect machines generating defective pieces.

tioned on the machine yield rates § can be represented as P(Y, Z|6).
Based on this, we can define Y = {ym | ineN&1<i<I&1<n<
N;}andZ = {2 | i,n,k e N&1<i<I&1<n<N;}.Then,P(Y,Z|))
can be calculated based on each piece in each batch of the
manufacturing process, as follows:

[N
P(Y,Z|0) :HH Fp(i, n)™ x Fg(i, n)' "), 1)

i=1 n=1

where the Fp(i, n) is the likelihood function of the defect rate, whereas
the Fs(i, n) is the likelihood function of the yield rate. The Fp(i, n) and
Fg(i, n) are defined as follows:

Zink
P )

Jin

guR

k=1

Fp(i, n) (2)

3

Several product pieces are manufactured in each batch. Therefore,
the likelihood for each batch is calculated based on the observed con-
dition of each piece. The observed condition of a product piece (defec-
tive or in good condition) is denoted as y;,. Therefore, based on (1), if the
nth piece is observed to be good (y;;, = 0) in the jth step of the
manufacturing process, then the calculation is subject to Fyp(i, n).
Otherwise, if the nth piece is observed to be defective (y;, = 1) in the jth
step of the manufacturing process, then the calculation is subject to
Fc;(i7 Tl).

Subsequently, Fp is calculated based on the defect rate of the pro-
duction machines (represented as 1 — Py), as shown in (2). In each
manufacturing process, the likelihood is the defect rate of the current
manufacturing process (1 — Pg) multiplied by the yield rate of the pre-

k-1
vious production machines (H P;). Fp can be used to estimate the in-
s=1
dicator variable of the nth piece of the ith batch observed to be defective
owing to the machine used in the kth step, and the indicator variable is
denoted by z;x. Meanwhile, F; is calculated based on the yield rates of
the production machines, as shown in (3). The calculation is straight-
forward, involving multiplication of the production yield rates (denoted
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by Py) of all the machines that were used in a specific batch.

As shown in Fig. 1, because the BoO only specifies the production
plan that uses a station sequence to process each batch, the manufac-
turer must assign an available machine at each station in the station
sequence to the batch during production. In (2) and (3), the yield rate of
each machine (Py) is mapped using the i; k index, which yields the no-
tation Py k). However, this notation complicates the equation. There-
fore, we simplify Py ) as Py to improve readability. Finally, the most
detailed version of our equation of P(Y,Z|0) is given in (4), as follow:

(17 ) (1))

i=1 n=1
4

Accordingly, given that our objective is to estimate the yield rate of
each machine, the complete likelihood function in (4) can be used to
estimate the defective pieces produced by each machine; this can sub-
sequently be used to estimate the yield rate of each machine. Finally,
another reason for using EM is that it is well suited for solving the
mathematical model of the problem in (4).

Jin

((

I

4. Proposed method

Because our approach is related to unknown or missing per-machine
yield-rate data, we propose a new EM-based algorithm whereby the
estimated per-machine yield rates can be used to make predictions. In
the proposed method, the per-machine yield rates are estimated by
iterating the EM algorithm until convergence is attained. The overall
procedure of our approach is shown in the activity diagram in Fig. 3.
Specifically, first, in step (a), we should preprocess and clean the raw
data, and then guess the initial per-machine yield rates in step (b). Step
(h) improves the estimation of the yield rate of each machine. It is
calculated based on the expected number of good pieces and the ex-
pected number of defective pieces produced by each machine. Both
variables are estimated based on the observed defective pieces in step
(c). Because both variables can be calculated independently, we use the
parallelism (bar) symbol after step (c). The expected number of good
pieces can be sequentially calculated by steps (e), (f), and (g), and the
expected number of defective pieces can be calculated by step (d). The
bottom bar symbol indicates that we should use both variables in step
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Fig. 3. Activity diagram of the proposed method to predicting the per-batch
yield rates.

(h). Finally, when the EM iteration stops in step (i), the future per-batch
yield rates can be predicted using the previously estimated per-machine
yield rates.

The hyperparameters in this approach are the number of iterations
and the convergence threshold. We limit the stopping criterion to a
threshold of 0.001. This implies that the result of current iteration is very
close to that of the previous iteration. Fig. 4 shows that a maximum
number of iterations of approximately 60-100 are sufficient to obtain
the optimal value (near the convergence threshold). The details of the
algorithm are explained in the following subsections.

4.1. Preprocessing

Because the raw production data provided by most manufacturers
are not clean, data preprocessing and cleaning are required, as indicated
by step (a) in Fig. 3. Several steps must be executed to preprocess and
clean the data. First, because the problem involves estimating the yield
rate of each machine, we can exclude manufacturing process data
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Fig. 4. MSE for each iteration in preliminary experiments.
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related to manual or human labor. Second, because the quality inspec-
tion equipment is only installed in several machines, the observed
defective pieces are set to zero for other machines, where it is impossible
to observe defective pieces. Third, a manufacturing process may be
divided into two or more sessions, which may result in the addition of
several distinct datasets related to the same manufacturing process. To
address this problem, we must merge these sessions into one session.
Finally, an example of the required preprocessing based on Fig. 1 is
summarized in Table 4.

4.2. Initial per-machine yield rates

Because the initial per-machine yield rates in the EM algorithm are
unknown, we must estimate the yield rates of all the machines used in
the manufacturing process, as indicated by step (b) in Fig. 3. In addition
to random guessing, several approaches can be used to estimate the yield
rates. For example, we can use constrained least squares to generate the
initial per-machine yield rates based on the per-batch yield rates, as
follows:

! c 2
arg min Z (E qik — lnl,-) (5)
o =1\ k=1
subject to gy < 0.

4.3. M-Step

The yield rates 6 are the initial input for the E-step of the proposed
method. Subsequently, the output of E-Step is used to improve the yield-
rate estimation in M-Step, which is the objective of each iteration, as
indicated by step (h) in Fig. 3. The yield rate of a particular machine is
the percentage of good pieces among all pieces generated by the ma-
chine. Therefore, the objective of each iteration can be expressed as
follows:

8
Pr(m) = . 6
) = et dn ©

4.4. E-Step

To obtain d,, and g,, we must estimate the number of defective
pieces produced by suspect machines, as indicated by step (c) in Fig. 3.
The proposed method is based on the principle of likelihood. In the real
world, the yield rates of most machines used in production should be
close to 0.999. However, when inspection equipment observes defective
pieces, all the previous machines, including the current machine, which
are used to process a batch, are suspects. Therefore, we expect the shared
probability of defective pieces to be distributed among the suspect
machines based on their yield rates. A particular machine could have a
lower yield-rate estimation if multiple batches have many defective
pieces after this machine is used. Consequently, if any defective pieces
are observed in each manufacturing step of each batch, we must first
estimate the likelihood that each particular machine is responsible for

Table 4
Example of required production data.

Batch Production Machine  # of processed # of observed
Number Sequence pieces defective pieces
Batch Al 1 Mch-1 10 0

2 Mch-5 10 1
Batch A2 1 Mch-1 32 0

2 Mch-6 32 3
Batch B1 1 Mch-2 100 0

2 Mch-3 100 5

3 Mch-4 95 0

4 Mch-6 95 9
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that defect (z;%) by using (4). Hence, we use (7) to calculate the likeli-
hood of the kth manufacturing step causing the nth piece of the ith batch
to be defective, which is represented as P (2 = 1|yin, 6).

0; ify, =0

k-1

Iir.)

(1 — P,’k)<
— i iy =
<(1 Pl-,)< m))

For each piece observed to be defective in the jth manufacturing step,
each particular manufacturing step is probably suspected. Therefore, the
expected number of defective pieces produced by each suspect machine
can be calculated as follows:

P(Z[nk = l‘yin; 0) = (7)

1

Jin

2

=1

E[Z[nk] =0x* P(ka = O|y[n70) + 1 P(Z[/rk = l‘yima)

E[Zink] = P(Ziﬂk = 1|yim6) (8)

For each manufacturing step of the ith batch, more than one piece
may be observed to be defective. Consequently, several observed
defective pieces have the same E[z;4]. Subsequently, we must estimate
the expected number of defective pieces for each suspect machine.
Therefore, the likelihood estimation in (8) can be multiplied by the
number of defective pieces observed in that manufacturing step, as
follows:

©)]

Then, to obtain d,,, we can combine e for each machine m in each
manufacturing process from all batches, as indicated by step (d) in
Fig. 3. Commonly, a machine m is used in several manufacturing steps,
which are registered in the set of (i,j,k) indexes of machine m, as in (10).
Accordingly, we can determine d,, as in (11).

€k = E[Zin/\'] X b,:f.

S = {(i.j, k)|Vmy. = m},

d, = Z ejjic-

(ij.k)ESm

(10)

(€8]

It should be noted that g, is associated with f;, and x;,. The value of
fim can be extracted from the data. However, to obtain x;,, we must first
calculate the number of potential defective pieces in each manufacturing
step, as in step (e) in Fig. 3; this can be expressed as follows:

0.
Ny = ?
i { R + egjis
Next, we can combine the hy; of each machine in each manufacturing
process of all batches to obtain x,,;, as in step (f) in Fig. 3, as follows:

Xm = g htjk .

(iJK)ESn

ifj = k

ifj > k 12

13

Subsequently, as the values of x;, and f;,, are known, we can calculate
gm, as in step (g) in Fig. 3. g, is related to a production sequence in which
a particular machine may be used more than once. Therefore,

1
8m = Xm + (Zfim'rim>-
i=1

(14)

4.5. Stop condition

The EM algorithm continues to iterate until a stopping condition is
satisfied. Two stopping conditions can be used: a convergence threshold
and the maximum number of iterations. The difference between the per-
machine yield rates in the current iteration and those in the previous
iteration is calculated using the mean square error (MSE) [28]. When the
MSE is lower than the convergence threshold, the stopping condition is
met; otherwise, if the number of iterations reaches the defined
maximum number of iterations, the algorithm is stopped. In our study, a
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threshold of 0.001 difference is used to stop the search for a better so-
lution. Based on our observation in preliminary experiments, a
maximum number of iterations of approximately 60-100 is deemed
sufficient to stop the algorithm from iterating. This does not have any
significant influence in further iterations, as shown in Fig. 4.

4.6. Prediction of per-batch yield rates

At the beginning of our approach, for each week’s data, we must
estimate the yield rate of each machine. We assume that the per-
machine yield rates estimated using the production data are a reliable
basis for predicting the production yield rates. Consequently, the result
of our approach can be used to predict the production yield rates, as
shown in step (i) in Fig. 3. Based on the FPY, the yield rate of a batch is
equal to the product of all the machine yield rates used by the batch,
which is expressed as (Hf:ilPi]-). In this case, P; is the per-machine yield-
rate estimation of the jth manufacturing step of the ith batch. To
calculate the average prediction accuracy of all batches (denoted by
acc), we need [; which is the actual yield rate of the ith batch. Therefore,
the average prediction accuracy of all batches in a particular week can
be expressed as follows:

I Ci
£ (i)
i=1 =1
1
In this study, we used data from only one week to predict the pro-
duction yield rates in the following weeks, up to five consecutive weeks.
However, in the future, the production process may use a machine that is
not used in the current week and does not have a yield-rate estimate.
Although we can use older production data for that particular machine,
to simplify the experiment, we ignore this case and exclude future
production batches that use any machine with no yield-rate estimation
in the current week.

(15)

acc =

5. Experiments and discussion

We used data from T-company (70-week data) to evaluate the pre-
diction performance of the proposed method, as described in Subsection
5.1. To explain the high accuracy of the proposed method, we conducted
several simulations, as described in Subsection 5.2. Then, we discuss the
proposed method based on the experimental and simulation results.

5.1. Experimental results using T-Company data

In our study, we used a large, real-world, 70-week dataset from T-
company, containing information regarding its manufacturing process.
The statistics of these real-world data are summarized in Table 5. To
evaluate the performance of our approach, we used 1-week data to
construct our prediction model, which was subsequently used to predict
the average per-batch yield rates for the following five weeks.

As shown in Fig. 5, the predicted per-batch yield rates for week 1
have an average accuracy of 91.86 %. Moreover, the results indicate that
the proposed method can do predictions for weeks 2—4 (the next month)
with an average accuracy of over 90 %. However, the predictions for
weeks 3 and beyond are more uncertain because of a sharp increase in

Table 5

Statistics of T-Company data for up to 70 weeks.
Description Min Max Mean Stdev
Number of machines used 194 250 222 10.2
Number of batches 287 1075 747 154.3
Defective pieces in a batch 0 163,072 1140 3,325.0
Number of steps in a batch 1 59 21 7.0
Inspection steps in a batch 1% 9 % 8% 1%
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Fig. 5. The prediction accuracy of T-Company’s per-batch yield-rate.

the standard deviation. The accuracy distribution of the per-batch pre-
diction could be seen in Table 6.

As seen in Fig. 6, the plots for the five predictions (weeks 1-5) are
highly similar, explaining the high similarity of the prediction accuracy
values in Fig. 5. Moreover, the prediction accuracy for week 5 is as low
as 79 % in some rare cases. Thus, the standard deviation of the predic-
tion for the fifth week is larger. In Subsection 5.3, we will discuss the
prediction accuracy changes.

5.2. Simulations of per-machine yield rates

For most manufacturers, including T-company, data regarding actual
per-machine yield rates are unavailable because it is impractical to use
quality inspection equipment in all production sequences. Therefore, we
performed simulations using generated per-machine yield rates and
production data. In these simulations, we used production data to esti-
mate the per-machine yield rates. Subsequently, we performed a sensi-
tivity analysis to evaluate the performance of our approach for each
manufacturing dataset of a given size. We used several variables in the
experiments: the set of machines (50, 250, and 500 machines), the set of
batches (500-5000 batches in increments of 500, and a special set of 10
batches at minimum), the set of average of 20 batch steps, and the set of
average inspection ratios of 10 % in each batch. The batch production
paths and the number of pieces, including defective pieces, were
included in each batch dataset. Therefore, the datasets can be classified
as follows in terms of size: small (<=1500 batches), medium (>1500
and <=3500 batches), and large (>3500 batches).

5.2.1. Machine and batch generation

At the start of the simulation, the per-machine yield rates were
generated; then, the batches were generated based on the machine data.
In one set of machine simulations, we used a random normal distribution
along with the distribution parameters given in row A in Table 7 to
determine the yield rate of each machine. Subsequently, we installed
inspection devices on 30 % of the production machines; these devices
could be turned off by manufacturers during production for whatever
reason.

After obtaining the machine data, we generated batch attributes,
namely, the number of batch steps, number of raw pieces, and number of
inspections in a batch, as indicated in rows B, C, and D, respectively, in

Table 6

Distribution of the prediction accuracy using T-company dataset.
Statistics Description Week 1 Week 2 Week 3 Week 4 Week 5
Minimum 86.73 % 87.08 % 84.39 % 79.53 % 79.65 %
Mean 91.86 % 91.30 % 90.85 % 90.71 % 90.56 %
Maximum 95.42 % 94.40 % 93.75 % 93.65 % 94.73 %
Standard Deviation 1.60 % 1.66 % 1.86 % 2.23% 2.74 %
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Fig. 6. Average accuracy of each prediction of T-Company data.

Table 7
Distribution parameters in each experiment combination.
#  Description Min Max Mean Stdev
A Machine yield rates* 0 1 0.99 0.1
B Number of raw pieces 1 20,000 2000 1500
C  Number of batch steps** 5 50 20 or 30 7
D  Number of inspection 2 batch 10 % or 30 % 2
machines in each batch machines length of batch
e length
E Observation accuracy of 85 % 100 % 90 % 2%

inspection equipment

" A includes extra 10 % randomness for the yield of each machine.

™ Average of 30 batch steps is only used in Table VIIL.

" Average of 30 % inspection is only used in Table VIIL

Table 8
Average accuracy of the per-machine yield-rate estimation on a manufacturer
that uses approximately 500 machines.

10 % inspection 30 % inspection

Batches
20 batch steps 30 batch steps 20 batch steps 30 batch steps
10 25.04 % 37.81 % 26.01 % 38.58 %
500 88.85 % 85.19 % 89.43 % 86.84 %
1000 90.15 % 86.17 % 90.87 % 87.72 %
3000 94.06 % 89.31 % 94.09 % 90.42 %
5000 94.19 % 89.64 % 94.34 % 91.36 %

Table 8. After generating the number of steps, we randomly assigned
inspection machines to several steps (based on the combinations
explained in Subsection 5.2); the remaining steps featured random
“normal machines.” In this case, a machine could be used more than
once to process a particular batch. Then, the sequence of the machine in
the batch steps was shuffled, but the last step involved the inspection
machines.

Second, we generated the number of defective pieces in each step.
Specifically, we randomized the yield rate of each machine by approx-
imately +£10 % of its original yield rate and calculated the number of
defective pieces from the current number of raw pieces and the modified
machine yield rate. Subsequently, the remaining good pieces were car-
ried forward to the next batch step.

Third, to simulate a real-world manufacturing environment, the
number of defective pieces in each step was hidden and accumulated
until the subsequent inspection. The batch steps with the inspection
machines were the only steps in which the defective pieces could be
observed, as indicated in row E in Table 8. This is supported by studies in
which the observation accuracy had a tolerance of 10 %-30 % [39,40],
implying that only 70 %-90 % of the accumulated defective pieces were
observed; the remaining unobservable defective pieces were accumu-
lated for the next inspection. In this case, the last inspection machine
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was set to have a 0 % tolerance, and all remaining defective pieces were
then observed.

Finally, each combination was used in our approach to estimate the
yield rate of each machine. However, because the procedure should be
applied 10 times for each combination, the machine and batch data were
regenerated. For this reason, we expected to obtain marginally different
results in each run, and we used the average as the final result.

5.2.2. Simulation results

Fig. 7 shows the results of our simulation experiments, which
demonstrate the good performance of our approach in estimating the
yield rates of machines in different simulation combinations. The three
lines in Fig. 7 represent simulations with approximately 20 batch steps
and 30 % of the inspection machines. A manufacturer that uses 50
machines for production may be required to produce fewer than 200
batches to obtain an accuracy higher than 90 %; a production run with at
least approximately 1000 batches may be required to obtain the best
accuracy, as indicated by point A in Fig. 7. However, when a manu-
facturer uses approximately 250 machines for production, the manu-
facturer may be required to produce at least approximately 1500 batches
to obtain the best accuracy, as indicated by point B in Fig. 7. Based on
the operational chart point D in Fig. 7, which is similar to the data model
of T-company, our approach could provide a good estimate of the per-
machine yield rates with an average accuracy of 91.84 %. Meanwhile,
a manufacturer with 500 machines and an average of 20 batch steps in
its production may be required to produce at least approximately 1000
batches to obtain an accuracy higher than 90 %, whereas at least
approximately 3000 batches to obtain the best accuracy, as indicated by
point Cin Fig. 7. The accuracy distribution of the per-machine yield-rate
estimation on a manufacturer that uses approximately 20 batch steps
and 10 % inspections, could be seen in Appendix B.

To better understand the performance of the proposed method, we
performed extra simulations with different batch lengths (20 and 30)
and inspection ratios (10 % and 30 % of batch steps in a batch). Based on
the simulation result on a manufacturer that uses up to 250 machines for
production, the average accuracy of per-machine yield rates is less
affected by the average number of batch steps and inspection machines.
However, when a manufacturer uses a large number of machines
(approx. 500 machines), these two factors greatly affect the average
accuracy of per-machine yield-rate estimation shown in Table 8. The
simulation result shows that, a manufacturer that uses approximately
500 machines with an average of 30 batch steps leads to a decrease in
accuracy compared to the one with an average of 20 batch steps.
However, by using approximately 30 % of the inspection machines in
each batch, accuracy increases compared with that when only approx-
imately 10 % of the inspection machines in each batch are used, as
shown in Table 8. The accuracy distribution of the per-machine yield-
rate estimation on a manufacturer that uses approximately 500

Operational Chart of Per-machine Yield Rate Estimation
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Fig. 7. Operational chart of the proposed method to estimating the per-
machine yield rates.
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machines, could be seen in Appendix C.

5.2.3. Validation

To further validate the simulation results in Fig. 7, the estimated per-
machine yield rates were used to predict the per-batch yield rates. The
validation is based on the first assumption in section 3, that the actual
per-machine yield rates do not change next week. Therefore, we
generated 5 validation datasets for each simulation combination in
subsection 5.2.1.

The results in Fig. 8 shows that, most simulations with only 10
batches dataset give poor prediction accuracy (close to 0 %). This is very
reasonable considering that many machines do not have the estimated
yield rates. Meanwhile, a manufacturer that uses 50 machines for pro-
duction may require a dataset with at least 100 batches to obtain a good
accuracy of per-batch yield rates prediction (>90 %). Whereas, a
manufacturer that uses approximately 250 machines for production may
require a dataset with at least 500 batches to obtain a good prediction
accuracy (>90 %). Furthermore, point A in Fig. 8 also indicates the
simulation result using a dataset pattern similar to T-Company provide a
good per-batch yield-rate prediction, which has average accuracy of
around 91.29 %. This confirms the prediction results with real-world
data of T-company shown in Fig. 5. However, a manufacturer that
uses approximately 500 machines may require a dataset with at least
1000 batches to obtain a good prediction accuracy (>90 %). The dis-
tribution of the prediction accuracy using the simulation dataset could
be seen in Appendix D.

To see the performance of the proposed prediction method on
different lengths of batch steps, we analyzed the simulation results of
approximately 20 batch steps for the per-machine yield-rate estimation.
The details of the analytical results of our simulation could be seen in
Table 9. The dataset is divided into two groups, the simple batch group
(<20 batch steps) and the complex batch group (>20 batch steps). The
data for 20 batch steps is excluded in this analysis. Based on the
analytical results, the complex batch group has a larger relative error
and a smaller accuracy. In other words, the proposed method performs
better on the simple group. Meanwhile, our prediction tends to under-
estimate the future batch yield rate in both groups, as seen in Table 9.
Similar results could be seen in a similar simulation, which has the same
settings as in Table 7 except that the randomness of the per-machine
yield rate to be 1 %. The results confirm that the proposed method
performs better on the simple group. The difference of this simulation
result is that, the prediction accuracy could reach close to 99 % with 1 %
randomness, while it could only reach 89 %-92 % with 10 % random-
ness. The details of the simulation result with 1 % randomness could be
seen in Appendix E.

5.3. Discussions

According to the experiments described in Section 5.1, our approach
accurately predicted the per-batch yield rates. In the case of T-company,

Validation of Per-batch Yield rate Prediction
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Fig. 8. Validation of the proposed method to predicting the per-batch
yield rates.
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Table 9
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Average simulated batch yield-rate and predicted batch yield rate regarding batch complexity in A manufacturer that uses approximately 50 machines.

Batches < 20 batch steps > 20 batch steps

Actual YR Pred YR Diff* Rel Error** AccH* Actual YR Pred YR Diff* Rel Error** AccH
10 0.5185 0.4699 0.0486 9.37 % 90.63 % 0.3551 0.2840 0.0711 20.03 % 79.97 %
500 0.5306 0.4858 0.0448 8.45% 91.55 % 0.3645 0.3269 0.0376 10.32 % 89.68 %
1000 0.5435 0.5008 0.0427 7.87 % 92.13 % 0.3812 0.3453 0.0359 9.42 % 90.58 %
3000 0.5622 0.5214 0.0408 7.26 % 92.74 % 0.4013 0.3663 0.0350 8.72% 91.28 %
5000 0.5470 0.5035 0.0435 7.96 % 92.04 % 0.3814 0.3447 0.0367 9.63 % 90.37 %

" Differences = Actual Yield Rate — Predicted Yield Rate.
™ Relative error = Differences / Actual Yield Rate.
" Accuracy = 1 - Relative error.

our approach could generate predictions for periods longer than one
month. However, we suggest that predictions should be made for only
one to two weeks (or periods) ahead. This is because the standard de-
viation increases when predictions are made for periods further into the
future. This standard deviation increase may be due to the following
reasons. First, some machines used in future weeks may not be used in
the week in which the per-machine yield rates were estimated. Hence,
fewer batches can be predicted. Second, the per-machine yield rates may
be affected by wear and tear in the following weeks. Therefore, the
actual per-machine yield rates may be lower than those estimated for a
certain day. Conversely, some machines may be maintained in the
following week, thus increasing their actual yield rate. Third, in rare
cases, our approach predicts the per-batch yield rates at accuracy as low
as 79 %. In this study, we observed that this was caused by the pro-
cessing of a few batches in the week for which the per-machine yield
rates were estimated, resulting in less accurate estimates of per-machine
yield rates. This observation is supported by Fig. 9, in which the fluc-
tuation of the plot of the number of batches is similar to the plot of the
week-5 prediction in Fig. 6.

To further understand whether the proposed method is effective for
different batch production patterns, we conducted simulations to mea-
sure the average accuracy of the estimated per-machine yield rates.
Then, the simulation of per-machine yield rates could be used as a
benchmark for the proposed method. The prediction results of T-com-
pany’s cases were good because the simulation indicated that the esti-
mated average per-machine yield rates were very close to the average
actual per-machine yield rates, where the estimation error was
approximately 8 %. However, our simulation indicated that the
randomness of the dataset increased when more machines were used in
production. This makes the proposed method less accurate. In this case,
we suggest that more batches be used to obtain accurate estimates, but
this could be difficult in practice. Moreover, with the same number of
machines, long sequences of each batch (longer batch steps) reduce the
accuracy of our approach. This is due to the effect of the principle of
likelihood on our E-step, as explained in Subsection 4.4, which may lead
to underestimation for a greater number of machines when defective
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Fig. 9. Number of batches for each week in T-Company data.

258

pieces are observed.

The accuracy reduction caused by a long sequence can be alleviated
by increasing the number of batches and the density of inspection sta-
tions; however, this increases production costs. Therefore, managers
must balance estimation accuracy (by having more inspection stations)
and production cost [41]. Although the number of machines, the num-
ber of batches, and the average batch steps are the most important
variables in our approach, the results indicate that the density of in-
spection stations should increase as the average number of batch steps
increases.

Based on the simulation results presented in Subsection 5.2.2, our
approach has a rather low accuracy for small datasets (small number of
batches). However, it is highly accurate for medium and larger datasets
(medium and large number of batches). In addition, based on the
simulation results, our approach is effective for small- and medium-scale
manufacturers, which use 500 or fewer machines and have an average
batch sequence with 30 or fewer steps.

In subsection 5.2.3, per-batch yield-rate prediction is used to validate
the simulation result of per-machine yield-rate estimation. It shows that
a very small dataset gives poor prediction accuracy. It is due to that the
dataset is insufficient to be able to estimate the per-machine yield rates.
Therefore, the estimation result can hardly be used to predict the per-
batch yield rates. It is reasonable that the prediction accuracy in-
creases as the number of batches in the dataset increases. However,
based on the simulation results in Fig. 8, the highest accuracy that could
be reached when predicting per-batch yield rates is approximately 92 %.
This confirms the prediction result of per-batch yield rates for week 1
shown in Fig. 5.

Furthermore, there are practical considerations for the proposed
method. First, from an economic perspective, using the proposed
method to predict the per-batch yield rates, manufacturers can plan
their production in general, including their production costs. Second,
from a technical perspective, our approach uses simple production data
that require fewer parameters. Accordingly, most manufacturers can
easily implement the proposed method with fewer resources.

6. Conclusions and directions for future research

The proposed method is a useful solution for predicting the per-batch
yield rates based on per-machine yield-rate estimations. In our experi-
ments, we used one-week data from T-company to build the prediction
model, then used the model to predict the pre-batch yield rate in the five
subsequent weeks. We validated the proposed prediction approach with
a total of 70 weeks of data from T-company. The average accuracy of our
approach is 91.86 % for the subsequent week, and consistently over 90
% for five consecutive weeks (over one month). However, it is suggested
that the per-batch yield rates be predicted for only one or two weeks. To
determine whether the proposed method is effective for different batch
production patterns, we used simulations. It was demonstrated that by
using a generated batch production pattern similar to that of T-com-
pany, our approach could provide a good estimation of the per-machine
yield rates. As a result, the average prediction accuracy of the per-batch
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yield rates could reach 91.29 %. Thus, the simulation results confirmed
the prediction accuracy of the per-batch yield rates using a real-world
dataset.

The number of machines, number of batches, and average number of
batch steps are the most important variables for estimating the per-
machine yield rates. The simulation results indicated that, the mini-
mum number of batches per week should be 100, 500, and 1000 batches
for the manufacturers with approx. 50, 250, and 500 machines,
respectively. In addition, our approach is appropriate for any manu-
facturer with 500 or fewer machines with an average of 30 or shorter
batch sequences. The proposed method is reasonable and could be used
by manufacturers to predict per-batch yield rates. Thus, manufacturers
can better plan their batch production and control risk. In addition, our
lightweight approach uses only production data without an excessive
number of parameters. Therefore, it may reduce management overhead,
as it requires fewer resources and is simpler to use. Hence, manufac-
turers with limited resources can easily implement this approach.

However, our approach has several limitations related to batch
specifications and single/continuous production systems (or the
manufacturing of a similar type). First, our approach estimates the per-
machine yield rates based on the station sequence. Although this is ac-
curate, it may provide unexpected results for fixed sequences of machine
stations because the machines at the beginning of the sequence are
necessarily considered suspects. Hence, their yield rates may be lower
than those of the machines in the final sequence. This implies that un-
expected results may be obtained in flow-shop manufacturing (or
similar). Second, based on the design of our approach, any suspect

Appendix

A Equations list
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machine is assigned a share of defective pieces based on its current yield
rate, regardless of its step or station number. These shares of defective
pieces in each batch are summed into a single value for each machine.
For this reason, our approach requires the processing of production data
based on batch specifications. We found that the machines used to
process different batch specifications may provide different batch yield
rates. Finally, this study opens the way to further investigate per-batch
yield rates so that these two limitations may be addressed in future
research.
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Equation Eq. Number
The simple version of the likelihood 1
I N
P(Y,Z|6) = HH(FD(i,n)y'" x Fg(i,n)! )
i=1n=1
where
Jin k-1 2
Fp(i,n) = H <(1 ’Pik)HPis>zmk
k=1 5=1
Jin 3
Fg(i,n) = HPik
k=1
Complete Likelihood Function 4
I N Jin k-1 Jin
sz (1f1( ({1 (0w Tlo ) - (1)
i=1n=1 \ \k=1 5=1 k=1
Constrained Least square 5
arg Hmi“ T ( Y - lﬂli) 2
subject to gx < 0
Updating per-machine yield rates 6
gm
Pr(m) =
m) &n + dm
Likelihood of kth manufacturing steps generates defective pieces 7
0; ify;m =0
k-1
3 ifyim =1
Jin t—1
Zt:l <(1 —Pu) (Hu:lpi“> )
E(Zink] :O*P(Zink:()b'inﬂ) +1*P(zink:1‘)'m>9) 8
E[Zink] = P(Zink = 1}.)’1'7”9)
Estimation number of the defective pieces 9
ejk = Elzink] % by
Set of (i,j,k) indexes 10
Sm = {(i,j. k)|vmy = m}
11
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(continued)
Equation Eq. Number
Total expectation number of defective pieces
dm = Z eijk
(ijk)ESm
The number of potential defective pieces 12
B = 0; iff =k
7 s + e iff > k
The total number of potential defective pieces 13
Xm = Y, hyk
(ij k) ESm
The total expected number of good pieces 14
8n = Xm + (E{:lfim'ﬁm)
The average accuracy of per-batch yield prediction 15
v (- (mfapy) - 1))
acc =
I
B Accuracy distribution of the machine yield-rate estimation (20 batch steps and 10 % inspections)
50 Machines 250 Machines 500 Machines
Batches
Min Avg Max Stdev Min Avg Max Stdev Min Avg Max Stdev
10 0.00 % 82.34 % 99.98 % 23.64 % 0.00 % 45.54 % 100.00 % 45.02 % 0.00 % 25.04 % 100.00 % 40.39 %
500 76.43 % 94.85 % 100.00 % 4.02 % 55.63 % 90.44 % 100.00 % 7.68 % 36.80 % 88.85 % 100.00 % 9.62 %
1000 82.64 % 95.83 % 99.99 % 3.49 % 62.51 % 91.84 % 100.00 % 6.12 % 53.55 % 90.15 % 100.00 % 7.77 %
3000 82.07 % 96.02 % 100.00 % 3.80 % 69.89 % 94.14 % 100.00 % 4.71 % 71.94 % 94.06 % 100.00 % 4.78 %
5000 86.02 % 96.16 % 99.99 % 3.86 % 79.78 % 95.41 % 100.00 % 3.85% 73.41 % 94.19 % 100.00 % 4.60 %
C. Accuracy distribution of the per-machine yield-rate estimation (500 machines)
20 batch steps 30 batch steps
Batches
Min Avg Max Stdev Min Avg Max Stdev
10 % inspection
10 0.00 % 25.04 % 100.00 % 40.39 % 0.00 % 37.81 % 100.00 % 44.67 %
500 36.80 % 88.85 % 100.00 % 9.62 % 16.87 % 85.19 % 100.00 % 14.40 %
1000 53.55 % 90.15 % 100.00 % 7.77 % 35.42 % 86.17 % 100.00 % 12.49 %
3000 71.94 % 94.06 % 100.00 % 4.78 % 54.26 % 89.31 % 100.00 % 10.31 %
5000 73.41 % 94.19 % 100.00 % 4.60 % 54.49 % 89.64 % 100.00 % 10.72 %
30 % inspection
10 0.00 % 26.01 % 99.99 % 40.74 % 0.00 % 38.58 % 99.99 % 44.87 %
500 39.30 % 89.43 % 100.00 % 8.86 % 36.88 % 86.84 % 99.99 % 11.66 %
1000 57.75 % 90.87 % 100.00 % 7.06 % 48.42 % 87.72 % 100.00 % 9.79 %
3000 76.53 % 94.09 % 100.00 % 4.35% 63.27 % 90.42 % 100.00 % 7.61 %
5000 63.63 % 94.34 % 100.00 % 4.20 % 67.70 % 91.36 % 100.00 % 7.13 %
D. Distribution of the per-batch yield rate prediction accuracy using simulation dataset
50 Machines 250 Machines 500 Machines
Batches
Min Avg Max Stdev Min Avg Max Stdev Min Avg Max Stdev
10 0.00 % 77.41 % 94.41 % 11.24 % n/a n/a n/a n/a n/a n/a n/a n/a
500 91.65 % 92.17 % 93.02 % 0.31 % 89.28 % 90.49 % 91.48 % 0.39 % 87.99 % 89.31 % 90.70 % 0.40 %
1000 91.55 % 92.25 % 93.00 % 0.14 % 90.54 % 91.29 % 92.08 % 0.19 % 89.94 % 90.79 % 91.66 % 0.25 %
3000 91.72 % 92.28 % 92.70 % 0.09 % 91.31 % 92.01 % 92.40 % 0.13% 91.69 % 92.06 % 92.40 % 0.11 %
5000 91.88 % 92.22 % 92.50 % 0.07 % 91.80 % 92.21 % 92.51 % 0.08 % 91.63 % 91.97 % 92.23 % 0.09 %

* The value of “n/a” means that the dataset for building model (machine yield rate estimation) are insufficient for batch yield-rate prediction.

E Average simulated batch yield-rate and predicted batch yield rate regarding batch complexity

This simulation results have the same settings as in Table 7 except that the randomness of the per-machine yield rate to be 1 %. The actual yield rate
is generated in the simulation as the ground truth. Then, the values in the columns of actual or predicted yield rate are the average of the yield rate in

one-week data.
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Batches < 20 batch steps > 20 batch steps
Actual YR Pred YR Diff* Rel Error** Acc*** Actual YR Pred YR Diff* Rel Error** Acc*r*
A manufacturer that uses approximately 50 machines

10 0.8071 0.7721 0.0350 4.34 % 95.66 % 0.7151 0.6221 0.0930 13.01 % 86.99 %
500 0.8061 0.7991 0.0070 0.86 % 99.14 % 0.7133 0.7055 0.0077 1.09 % 98.91 %
1000 0.8101 0.8036 0.0064 0.79 % 99.21 % 0.7191 0.7106 0.0085 1.18 % 98.82 %
3000 0.8015 0.7940 0.0075 0.94 % 99.06 % 0.7061 0.6970 0.0092 1.30 % 98.70 %
5000 0.8175 0.8111 0.0064 0.78 % 99.22 % 0.7281 0.7199 0.0082 1.12% 98.88 %

A manufacturer that uses approximately 250 machines

10 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
500 0.8109 0.7996 0.0113 1.40 % 98.60 % 0.7187 0.7179 0.0008 0.11 % 99.89 %
1000 0.8060 0.7956 0.0104 1.29 % 98.71 % 0.7103 0.7076 0.0027 0.38 % 99.62 %
3000 0.8055 0.7972 0.0083 1.03 % 98.97 % 0.7110 0.7032 0.0079 1.11 % 98.89 %
5000 0.8125 0.8052 0.0074 0.91 % 99.09 % 0.7212 0.7148 0.0063 0.87 % 99.13 %

A manufacturer that uses approximately 500 machines

10 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
500 0.8071 0.7977 0.0094 1.17 % 98.83 % 0.7134 0.7106 0.0028 0.40 % 99.60 %
1000 0.8067 0.7970 0.0097 1.20 % 98.80 % 0.7145 0.7131 0.0015 0.21 % 99.79 %
3000 0.8050 0.7980 0.0070 0.87 % 99.13 % 0.7112 0.7037 0.0075 1.06 % 98.94 %
5000 0.8115 0.8042 0.0073 0.90 % 99.10 % 0.7197 0.7123 0.0074 1.02 % 98.98 %

*Differences = Actual Yield Rate — Predicted Yield Rate.
**Relative error = Differences / Actual Yield Rate.
*** Accuracy = 1 - Relative error.
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